More Exotic Options

1 Barrier Options

2 Compound Options

3 Gap Options

More Exotic Options

1 Barrier Options

2 Compound Options

Gap Options

The payoff of a Barrier option is path dependent

- More precisely, the payoff depends on whether over the option life
 the underlying price reaches the barrier; note that this is a simplistic
 view of things the stock prices are observed at discrete times and
 the wording above implies continuous observation of stock prices
- Knock-out options go out of existence if the asset price reaches the barrier; the variants are
- down-and-out: has to fall to reach the barrier
- 1 up-and-out: has to rise to reach the barrier
- Knock-in options come into existence if the asset price reaches the barrier: the variants are
- down-and-in: has to fall to reach the barrier
- † up-and-in: has to rise to reach the barrier Some examples of situations when Asian options are useful are:
- Not that a "sum" of a knock-in and a knock-out option is equivalent to the "ordinary" option

- The payoff of a Barrier option is path dependent
- More precisely, the payoff depends on whether over the option life
 the underlying price reaches the barrier; note that this is a simplistic
 view of things the stock prices are observed at discrete times and
 the wording above implies continuous observation of stock prices
- Knock-out options go out of existence if the asset price reaches the barrier; the variants are
- ↓ down-and-out: has to fall to reach the barrier
- up-and-out: has to rise to reach the barrier
- Knock-in options come into existence if the asset price reaches the barrier; the variants are
- down-and-in: has to fall to reach the barrier
- † up-and-in: has to rise to reach the barrier Some examples of situations when Asian options are useful are:
- Not that a "sum" of a knock-in and a knock-out option is equivalent to the "ordinary" option

- The payoff of a Barrier option is path dependent
- More precisely, the payoff depends on whether over the option life
 the underlying price reaches the barrier; note that this is a simplistic
 view of things the stock prices are observed at discrete times and
 the wording above implies continuous observation of stock prices
- Knock-out options go out of existence if the asset price reaches the barrier; the variants are
- ↓ down-and-out: has to fall to reach the barrier
- 1 up-and-out: has to rise to reach the barrier
- Knock-in options come into existence if the asset price reaches the barrier; the variants are
- down-and-in: has to fall to reach the barrier
- † up-and-in: has to rise to reach the barrier Some examples of situations when Asian options are useful are:
- Not that a "sum" of a knock-in and a knock-out option is equivalent to the "ordinary" option

- The payoff of a Barrier option is path dependent
- More precisely, the payoff depends on whether over the option life
 the underlying price reaches the barrier; note that this is a simplistic
 view of things the stock prices are observed at discrete times and
 the wording above implies continuous observation of stock prices
- Knock-out options go out of existence if the asset price reaches the barrier; the variants are
- down-and-out: has to fall to reach the barrier
- ↑ up-and-out: has to rise to reach the barrier
- Knock-in options come into existence if the asset price reaches the barrier; the variants are
- down-and-in: has to fall to reach the barrier
- † up-and-in: has to rise to reach the barrier Some examples of situations when Asian options are useful are:
- Not that a "sum" of a knock-in and a knock-out option is equivalent to the "ordinary" option

- The payoff of a Barrier option is path dependent
- More precisely, the payoff depends on whether over the option life
 the underlying price reaches the barrier; note that this is a simplistic
 view of things the stock prices are observed at discrete times and
 the wording above implies continuous observation of stock prices
- Knock-out options go out of existence if the asset price reaches the barrier; the variants are
- ↓ down-and-out: has to fall to reach the barrier
- ↑ up-and-out: has to rise to reach the barrier
- Knock-in options come into existence if the asset price reaches the barrier; the variants are
- down-and-in: has to fall to reach the barrier
- † up-and-in: has to rise to reach the barrier Some examples of situations when Asian options are useful are:
- Not that a "sum" of a knock-in and a knock-out option is equivalent to the "ordinary" option

- The payoff of a Barrier option is path dependent
- More precisely, the payoff depends on whether over the option life
 the underlying price reaches the barrier; note that this is a simplistic
 view of things the stock prices are observed at discrete times and
 the wording above implies continuous observation of stock prices
- Knock-out options go out of existence if the asset price reaches the barrier; the variants are
- ↓ down-and-out: has to fall to reach the barrier
- ↑ up-and-out: has to rise to reach the barrier
- Knock-in options come into existence if the asset price reaches the barrier; the variants are
- ↓ down-and-in: has to fall to reach the barrier
- † up-and-in: has to rise to reach the barrier Some examples of situations when Asian options are useful are:
- Not that a "sum" of a knock-in and a knock-out option is equivalent to the "ordinary" option

- The payoff of a Barrier option is path dependent
- More precisely, the payoff depends on whether over the option life
 the underlying price reaches the barrier; note that this is a simplistic
 view of things the stock prices are observed at discrete times and
 the wording above implies continuous observation of stock prices
- Knock-out options go out of existence if the asset price reaches the barrier; the variants are
- ↓ down-and-out: has to fall to reach the barrier
- ↑ up-and-out: has to rise to reach the barrier
- Knock-in options come into existence if the asset price reaches the barrier; the variants are
- down-and-in: has to fall to reach the barrier
- † up-and-in: has to rise to reach the barrier Some examples of situations when Asian options are useful are:
- Not that a "sum" of a knock-in and a knock-out option is equivalent to the "ordinary" option

- The payoff of a Barrier option is path dependent
- More precisely, the payoff depends on whether over the option life
 the underlying price reaches the barrier; note that this is a simplistic
 view of things the stock prices are observed at discrete times and
 the wording above implies continuous observation of stock prices
- Knock-out options go out of existence if the asset price reaches the barrier; the variants are
- ↓ down-and-out: has to fall to reach the barrier
- ↑ up-and-out: has to rise to reach the barrier
- Knock-in options come into existence if the asset price reaches the barrier; the variants are
- down-and-in: has to fall to reach the barrier
- up-and-in: has to rise to reach the barrier Some examples of situations when Asian options are useful are:
- Not that a "sum" of a knock-in and a knock-out option is equivalent to the "ordinary" option

- The payoff of a Barrier option is path dependent
- More precisely, the payoff depends on whether over the option life
 the underlying price reaches the barrier; note that this is a simplistic
 view of things the stock prices are observed at discrete times and
 the wording above implies continuous observation of stock prices
- Knock-out options go out of existence if the asset price reaches the barrier; the variants are
- ↓ down-and-out: has to fall to reach the barrier
- ↑ up-and-out: has to rise to reach the barrier
- Knock-in options come into existence if the asset price reaches the barrier; the variants are
- ↓ down-and-in: has to fall to reach the barrier
- up-and-in: has to rise to reach the barrier Some examples of situations when Asian options are useful are:
- Not that a "sum" of a knock-in and a knock-out option is equivalent to the "ordinary" option

- Rebate options make a fixed payment if the asset price reaches the barrier; we have
- down rebates: has to fall to reach the barrier
- ↑ up rebates: has to rise to reach the barrier
- More complex barrier options require the asset price to not only cross a barrier, but spend a certain amount of time across the barrier in order to knock in or knock out

- Rebate options make a fixed payment if the asset price reaches the barrier; we have
- down rebates: has to fall to reach the barrier
- ↑ up rebates: has to rise to reach the barrier
- More complex barrier options require the asset price to not only cross a barrier, but spend a certain amount of time across the barrier in order to knock in or knock out

- Rebate options make a fixed payment if the asset price reaches the barrier; we have
- down rebates: has to fall to reach the barrier
- up rebates: has to rise to reach the barrier
- More complex barrier options require the asset price to not only cross a barrier, but spend a certain amount of time across the barrier in order to knock in or knock out

- Rebate options make a fixed payment if the asset price reaches the barrier; we have
- down rebates: has to fall to reach the barrier
- up rebates: has to rise to reach the barrier
- More complex barrier options require the asset price to not only cross a barrier, but spend a certain amount of time across the barrier in order to knock in or knock out

- Let us spend some time studying a particular barrier option the analysis of the other options would be analogous
- Assume that the underlying risky asset S is a geometric Brownian motion

$$dS(t) = rS(t) dt + \sigma S(t) d\tilde{W}(t)$$

where \tilde{W} is a standard Brownian motion under the risk-neutral measure $\tilde{\mathbb{P}}$

- Consider a European call, expiring at time T with strike price K and up-and-out barrier B (of course, K < B)
- As we have seen before, the closed form for the solution of the above SDE for the asset price S is

$$S(t) = S(0)e^{\sigma \tilde{W}(t) + (r - \frac{1}{2}\sigma^2)t} = S(0)e^{\sigma \hat{W}(t)}$$

$$\hat{W}(t) = \frac{1}{\sigma} \left(r - \frac{1}{2}\sigma^2\right)t + \tilde{W}(t)$$

- Let us spend some time studying a particular barrier option the analysis of the other options would be analogous
- ullet Assume that the underlying risky asset S is a geometric Brownian motion

$$dS(t) = rS(t) dt + \sigma S(t) d\tilde{W}(t),$$

where $\tilde{\mathcal{W}}$ is a standard Brownian motion under the risk-neutral measure $\tilde{\mathbb{P}}$

- Consider a European call, expiring at time T with strike price K and up-and-out barrier B (of course, K < B)
- As we have seen before, the closed form for the solution of the above SDE for the asset price S is

$$S(t) = S(0)e^{\sigma \tilde{W}(t) + (r - \frac{1}{2}\sigma^2)t} = S(0)e^{\sigma \hat{W}(t)}$$

$$\hat{W}(t) = \frac{1}{\sigma}(r - \frac{1}{2}\sigma^2)t + \tilde{W}(t)$$

- Let us spend some time studying a particular barrier option the analysis of the other options would be analogous
- ullet Assume that the underlying risky asset S is a geometric Brownian motion

$$dS(t) = rS(t) dt + \sigma S(t) d\tilde{W}(t),$$

where $\tilde{\mathcal{W}}$ is a standard Brownian motion under the risk-neutral measure $\tilde{\mathbb{P}}$

- Consider a European call, expiring at time T with strike price K and up-and-out barrier B (of course, K < B)
- As we have seen before, the closed form for the solution of the above SDE for the asset price S is

$$S(t) = S(0)e^{\sigma \tilde{W}(t) + (r - \frac{1}{2}\sigma^2)t} = S(0)e^{\sigma \hat{W}(t)}$$

$$\hat{W}(t) = \frac{1}{\sigma}(r - \frac{1}{2}\sigma^2)t + \tilde{W}(t)$$

- Let us spend some time studying a particular barrier option the analysis of the other options would be analogous
- Assume that the underlying risky asset S is a geometric Brownian motion

$$dS(t) = rS(t) dt + \sigma S(t) d\tilde{W}(t),$$

where \tilde{W} is a standard Brownian motion under the risk-neutral measure $\tilde{\mathbb{P}}$

- Consider a European call, expiring at time T with strike price K and up-and-out barrier B (of course, K < B)
- As we have seen before, the closed form for the solution of the above SDE for the asset price S is

$$S(t) = S(0)e^{\sigma \tilde{W}(t) + (r - \frac{1}{2}\sigma^2)t} = S(0)e^{\sigma \hat{W}(t)}$$

$$\hat{W}(t) = rac{1}{\sigma}(r - rac{1}{2}\sigma^2)t + ilde{W}(t)$$

Define

$$\hat{M}_T = \max_{0 \le t \le T} \hat{W}(t)$$

Then, we have that

$$\max_{0 \le t \le T} S(t) = e^{\sigma \hat{M}(T)}$$

The option kicks out if and only if

$$S(0)e^{\sigma \hat{M}(T)} > B$$

- If the above happens the option is rendered worthless
- 1

$$S(0)e^{\sigma \hat{M}(T)} \leq E$$

$$(S(T) - K)^{+} = (S(0)e^{\sigma \hat{W}(T)} - K)^{+}$$

Define

$$\hat{M}_T = \max_{0 \le t \le T} \hat{W}(t)$$

• Then, we have that

$$\max_{0 \le t \le T} S(t) = e^{\sigma \hat{M}(T)}$$

The option kicks out if and only if

$$S(0)e^{\sigma \hat{M}(T)} > B$$

- If the above happens the option is rendered worthless
- 11

$$S(0)e^{\sigma \hat{M}(T)} \leq B$$

$$(S(T) - K)^{+} = (S(0)e^{\sigma \hat{W}(T)} - K)^{+}$$

Define

$$\hat{M}_T = \max_{0 \le t \le T} \hat{W}(t)$$

• Then, we have that

$$\max_{0 \le t \le T} S(t) = e^{\sigma \hat{M}(T)}$$

• The option kicks out if and only if

$$S(0)e^{\sigma \hat{M}(T)} > B$$

- If the above happens the option is rendered worthless
- |

$$S(0)e^{\sigma \hat{M}(T)} \leq E$$

$$(S(T) - K)^{+} = (S(0)e^{\sigma \hat{W}(T)} - K)^{+}$$

Define

$$\hat{M}_T = \max_{0 \le t \le T} \hat{W}(t)$$

• Then, we have that

$$\max_{0 \le t \le T} S(t) = e^{\sigma \hat{M}(T)}$$

• The option kicks out if and only if

$$S(0)e^{\sigma \hat{M}(T)} > B$$

- If the above happens the option is rendered worthless
- •

$$S(0)e^{\sigma \hat{M}(T)} \leq B$$

$$(S(T) - K)^{+} = (S(0)e^{\sigma \hat{W}(T)} - K)^{-}$$

Define

$$\hat{M}_T = \max_{0 \le t \le T} \hat{W}(t)$$

• Then, we have that

$$\max_{0 \le t \le T} S(t) = e^{\sigma \hat{M}(T)}$$

• The option kicks out if and only if

$$S(0)e^{\sigma \hat{M}(T)} > B$$

- If the above happens the option is rendered worthless
- If

$$S(0)e^{\sigma \hat{M}(T)} < B$$

$$(S(T) - K)^{+} = (S(0)e^{\sigma \hat{W}(T)} - K)^{+}$$

Define

$$\hat{M}_T = \max_{0 \le t \le T} \hat{W}(t)$$

• Then, we have that

$$\max_{0 \le t \le T} S(t) = e^{\sigma \hat{M}(T)}$$

The option kicks out if and only if

$$S(0)e^{\sigma \hat{M}(T)} > B$$

- If the above happens the option is rendered worthless
- If

$$S(0)e^{\sigma \hat{M}(T)} \leq B$$

$$(S(T) - K)^{+} = (S(0)e^{\sigma \hat{W}(T)} - K)^{+}$$

Up-and-Out Call: The payoff

 Altogether, when we combine the above two cases, the payoff of the option is

$$\begin{split} V(T) &= (S(0)e^{\sigma\hat{W}(t)} - K)^{+} \mathbb{I}_{\{S(0)e^{\sigma\hat{M}(T)} \leq B\}} \\ &= (S(0)e^{\sigma\hat{W}(t)} - K)\mathbb{I}_{\{S(0)e^{\sigma\hat{W}(t)} \geq K, S(0)e^{\sigma\hat{M}(T)} \leq B\}} \\ &= (S(0)e^{\sigma\hat{W}(t)} - K)\mathbb{I}_{\{\hat{W}(T) \geq k, \hat{M}(T) \leq b\}} \end{split}$$

where

$$k = \frac{1}{\sigma} \ln \left(\frac{K}{S(0)} \right);$$
$$b = \frac{1}{\sigma} \ln \left(\frac{B}{S(0)} \right)$$

 The fact that we know explicitly the formula for the joint density of a Brownian motion and its maximum helps us in the valuation procedure

Up-and-Out Call: The payoff

 Altogether, when we combine the above two cases, the payoff of the option is

$$\begin{split} V(T) &= (S(0)e^{\sigma\hat{W}(t)} - K)^{+} \mathbb{I}_{\{S(0)e^{\sigma\hat{M}(T)} \leq B\}} \\ &= (S(0)e^{\sigma\hat{W}(t)} - K) \mathbb{I}_{\{S(0)e^{\sigma\hat{W}(t)} \geq K, S(0)e^{\sigma\hat{M}(T)} \leq B\}} \\ &= (S(0)e^{\sigma\hat{W}(t)} - K) \mathbb{I}_{\{\hat{W}(T) \geq k, \hat{M}(T) \leq b\}} \end{split}$$

where

$$k = \frac{1}{\sigma} \ln \left(\frac{K}{S(0)} \right);$$
$$b = \frac{1}{\sigma} \ln \left(\frac{B}{S(0)} \right)$$

 The fact that we know explicitly the formula for the joint density of a Brownian motion and its maximum helps us in the valuation procedure

- In general, barrier options are "cheaper" than the otherwise identical "ordinary" options
- Under some minor assumptions, it is possible to find the price of the barrier options in the Black-Scholes setting
- The formula for the price is quite long but it contains only N as a special function
- In fact, the up-and-out option's price satisfies the Black-Scholes-Merton partial differential equation (as the price for the ordinary European call) - it is the boundary conditions that are different (they have to account for the barrier) and they complicate matters somewhat

- In general, barrier options are "cheaper" than the otherwise identical "ordinary" options
- Under some minor assumptions, it is possible to find the price of the barrier options in the Black-Scholes setting
- The formula for the price is quite long but it contains only N as a special function
- In fact, the up-and-out option's price satisfies the Black-Scholes-Merton partial differential equation (as the price for the ordinary European call) - it is the boundary conditions that are different (they have to account for the barrier) and they complicate matters somewhat

- In general, barrier options are "cheaper" than the otherwise identical "ordinary" options
- Under some minor assumptions, it is possible to find the price of the barrier options in the Black-Scholes setting
- The formula for the price is quite long but it contains only N as a special function
- In fact, the up-and-out option's price satisfies the Black-Scholes-Merton partial differential equation (as the price for the ordinary European call) - it is the boundary conditions that are different (they have to account for the barrier) and they complicate matters somewhat

- In general, barrier options are "cheaper" than the otherwise identical "ordinary" options
- Under some minor assumptions, it is possible to find the price of the barrier options in the Black-Scholes setting
- The formula for the price is quite long but it contains only N as a special function
- In fact, the up-and-out option's price satisfies the Black-Scholes-Merton partial differential equation (as the price for the ordinary European call) - it is the boundary conditions that are different (they have to account for the barrier) and they complicate matters somewhat

More Exotic Options

1 Barrier Options

2 Compound Options

Gap Options

- A compound option is an option to buy an option
- Let us draw a timeline
- Consider a call on a call option, i.e., an option to buy a call option with maturity T and strike price K at some exercise time $T_1 < T$, for some strike price K_1
- This call on a call should be exercise at time T_1 only if the strike price K_1 is lower than the price of the underlying call option at time T_1
- ullet So, the payoff of this option at time T_1 is

$$(C(T_1) - K_1)^+ = (C(S(T_1), K, T - T_1) - K_1)^+$$

- A compound option is an option to buy an option
- Let us draw a timeline
- Consider a call on a call option, i.e., an option to buy a call option with maturity T and strike price K at some exercise time $T_1 < T$, for some strike price K_1
- This call on a call should be exercise at time T_1 only if the strike price K_1 is lower than the price of the underlying call option at time T_1
- So, the payoff of this option at time T_1 is

$$(C(T_1) - K_1)^+ = (C(S(T_1), K, T - T_1) - K_1)^+$$

- A compound option is an option to buy an option
- Let us draw a timeline
- Consider a call on a call option, i.e., an option to buy a call option with maturity T and strike price K at some exercise time $T_1 < T$, for some strike price K_1
- This call on a call should be exercise at time T_1 only if the strike price K_1 is lower than the price of the underlying call option at time T_1
- So, the payoff of this option at time T_1 is

$$(C(T_1) - K_1)^+ = (C(S(T_1), K, T - T_1) - K_1)^+$$

- A compound option is an option to buy an option
- Let us draw a timeline
- Consider a call on a call option, i.e., an option to buy a call option with maturity T and strike price K at some exercise time $T_1 < T$, for some strike price K_1
- This call on a call should be exercise at time T_1 only if the strike price K_1 is lower than the price of the underlying call option at time T_1
- So, the payoff of this option at time T_1 is

$$(C(T_1) - K_1)^+ = (C(S(T_1), K, T - T_1) - K_1)^+$$

- A compound option is an option to buy an option
- Let us draw a timeline
- Consider a call on a call option, i.e., an option to buy a call option with maturity T and strike price K at some exercise time $T_1 < T$, for some strike price K_1
- This call on a call should be exercise at time T_1 only if the strike price K_1 is lower than the price of the underlying call option at time T_1
- So, the payoff of this option at time T_1 is

$$(C(T_1) - K_1)^+ = (C(S(T_1), K, T - T_1) - K_1)^+$$

The Pricing

- Assume the Black-Scholes-Merton setting and denote the price of the underlying call option at time T_1 by $C(T_1)$ we know the formula for this value
 - Then the time 0 price of the call on a call option can be represented as

$$\begin{split} \tilde{\mathbb{E}}_{0}[e^{-rT_{1}}(C(T_{1})-K_{1})^{+}] \\ &= \tilde{\mathbb{E}}_{0}[e^{-rT_{1}}(\tilde{\mathbb{E}}_{T_{1}}[e^{-r(T-T_{1})}(S(T)-K)^{+}]-K_{1})^{+}] \\ &= \tilde{\mathbb{E}}_{0}[e^{-rT}(S(T)-K)^{+}-e^{-rT_{1}}K_{1}]\mathbb{I}_{\{C(T_{1})\geq K_{1}\}} \end{split}$$

where $\tilde{\mathbb{E}}$ denotes the expectation with respect to the risk-neutral probability $\tilde{\mathbb{P}}$

The Pricing

- Assume the Black-Scholes-Merton setting and denote the price of the underlying call option at time T_1 by $C(T_1)$ we know the formula for this value
- Then the time 0 price of the call on a call option can be represented as

$$\begin{split} \tilde{\mathbb{E}}_{0}[e^{-rT_{1}}(C(T_{1})-K_{1})^{+}] \\ &= \tilde{\mathbb{E}}_{0}[e^{-rT_{1}}(\tilde{\mathbb{E}}_{T_{1}}[e^{-r(T-T_{1})}(S(T)-K)^{+}]-K_{1})^{+}] \\ &= \tilde{\mathbb{E}}_{0}[e^{-rT}(S(T)-K)^{+}-e^{-rT_{1}}K_{1}]\mathbb{I}_{\{C(T_{1})\geq K_{1}\}} \end{split}$$

where $\tilde{\mathbb{E}}$ denotes the expectation with respect to the risk-neutral probability $\tilde{\mathbb{P}}$

- Let CallOnCall denote the price of the compound call on an underlying call option with maturity T_1
- Let PutOnCall denote the price of the compound put on an underlying call option (the exact analogue of the above call-on-call)
- Let Call denote the price of the underlying call option
- Then the parity for compound options reads as

$$CallOnCall - PutOnCall = Call - x^{-rT_1}$$

- Let CallOnCall denote the price of the compound call on an underlying call option with maturity T_1
- Let *PutOnCall* denote the price of the compound put on an underlying call option (the exact analogue of the above call-on-call)
- Let Call denote the price of the underlying call option
- Then the parity for compound options reads as

$$CallOnCall - PutOnCall = Call - x^{-rT_1}$$

- Let CallOnCall denote the price of the compound call on an underlying call option with maturity \mathcal{T}_1
- Let *PutOnCall* denote the price of the compound put on an underlying call option (the exact analogue of the above call-on-call)
- Let Call denote the price of the underlying call option
- Then the parity for compound options reads as

$$CallOnCall - PutOnCall = Call - x^{-rT_1}$$

- Let CallOnCall denote the price of the compound call on an underlying call option with maturity T_1
- Let *PutOnCall* denote the price of the compound put on an underlying call option (the exact analogue of the above call-on-call)
- Let Call denote the price of the underlying call option
- Then the parity for compound options reads as

$$CallOnCall - PutOnCall = Call - x^{-rT_1}$$

More Exotic Options

1 Barrier Options

2 Compound Options

3 Gap Options

A Gap Call

- A gap call option pays SK_1 when $S > K_2$
- There is a gap in the payoff diagram hence the name of the option
- The Black-Scholes price of a gap call option is

$$C(S, K_1, K_2, \sigma, r, T, \delta) = Se^{-\delta T} N(d_1) - Ke^{-rT} N(d_2)$$

where

$$d_1 = \frac{1}{\sigma\sqrt{T}} \left[\ln\left(\frac{S}{K_2}\right) + \left(r - \delta + \frac{1}{2}\sigma^2\right)T \right]$$

and
$$d_2 = d_1 - \sigma \sqrt{T}$$

A Gap Call

- A gap call option pays SK_1 when $S > K_2$
- There is a gap in the payoff diagram hence the name of the option
- The Black-Scholes price of a gap call option is

$$C(S, K_1, K_2, \sigma, r, T, \delta) = Se^{-\delta T} N(d_1) - Ke^{-rT} N(d_2)$$

where

$$d_1 = \frac{1}{\sigma\sqrt{T}}\left[\ln\left(\frac{S}{K_2}\right) + \left(r - \delta + \frac{1}{2}\sigma^2\right)T\right]$$

and
$$d_2 = d_1 - \sigma \sqrt{T}$$

A Gap Call

- A gap call option pays SK_1 when $S > K_2$
- There is a gap in the payoff diagram hence the name of the option
- The Black-Scholes price of a gap call option is

$$C(S, K_1, K_2, \sigma, r, T, \delta) = Se^{-\delta T}N(d_1) - Ke^{-rT}N(d_2)$$

where

$$d_1 = rac{1}{\sigma\sqrt{T}}\left[\ln\left(rac{\mathcal{S}}{\mathcal{K}_2}
ight) + (r-\delta + rac{1}{2}\sigma^2)T
ight]$$

and
$$d_2 = d_1 - \sigma \sqrt{T}$$