The Growth of Money

1. Interest

2. Accumulation and amount functions

3. Simple Interest/Linear Accumulation Functions

4. Discount functions/The time value of money

5. Simple discount
The Growth of Money

1. Interest

2. Accumulation and amount functions

3. Simple Interest/Linear Accumulation Functions

4. Discount functions/The time value of money

5. Simple discount
What is interest?

• K...the principal, i.e., the amount of money that the **borrower** borrows/lender lends at time $t = 0$

• S...the amount of money that changes hands at a later time - say, T

• The interest is defined as

$$S - K \geq 0$$

Reading assignment: Section 1.2 in the textbook (on the rationale behind the existence of interest)
What is interest?

- $K\ldots$ the principal, i.e., the amount of money that the borrower borrows/lender lends at time $t = 0$
- $S\ldots$ the amount of money that changes hands at a later time - say, T
- The interest is defined as

\[S - K \geq 0 \]

Reading assignment: Section 1.2 in the textbook (on the rationale behind the existence of interest)
What is interest?

• K...the principal, i.e., the amount of money that the borrower borrows/lender lends at time $t = 0$

• S...the amount of money that changes hands at a later time - say, T

• The interest is defined as

$$S - K \geq 0$$

Reading assignment: Section 1.2 in the textbook (on the rationale behind the existence of interest)
What is interest?

- K... the principal, i.e., the amount of money that the borrower borrows/lender lends at time $t = 0$
- S... the amount of money that changes hands at a later time - say, T
- The interest is defined as

 $$S - K \geq 0$$

Reading assignment: Section 1.2 in the textbook (on the rationale behind the existence of interest)
The Growth of Money

1. Interest

2. Accumulation and amount functions

3. Simple Interest/Linear Accumulation Functions

4. Discount functions/The time value of money

5. Simple discount
The amount function

- Let us temporarily fix the principal K
- $A_K(t)$... the amount function for principal K, i.e., the balance at time $t \geq 0$ (time is always measured in some agreed upon units; think “years” for now)
- In words: K invested at time $t = 0$ “grows” to $A_K(t)$ at time $t \geq 0$
- Note: $A_K(0) = K$
The amount function

- Let us temporarily fix the principal K
- $A_K(t) \ldots$ the amount function for principal K, i.e., the balance at time $t \geq 0$ (time is always measured in some agreed upon units; think “years” for now)
- In words: K invested at time $t = 0$ “grows” to $A_K(t)$ at time $t \geq 0$
- Note: $A_K(0) = K$
The amount function

- Let us temporarily fix the principal K
- $A_K(t)$... the amount function for principal K, i.e., the balance at time $t \geq 0$ (time is always measured in some agreed upon units; think “years” for now)
- In words: K invested at time $t = 0$ “grows” to $A_K(t)$ at time $t \geq 0$
- Note: $A_K(0) = K$
The amount function

- Let us temporarily fix the principal K
- $A_K(t)$... the amount function for principal K, i.e., the balance at time $t \geq 0$ (time is always measured in some agreed upon units; think “years” for now)
- In words: K invested at time $t = 0$ “grows” to $A_K(t)$ at time $t \geq 0$
- Note: $A_K(0) = K$
The accumulation function

• $a(t)$. . . the accumulation function, i.e., the amount function if the principal K is one dollar

• Formally: If the principal is one dollar, we write

$$a(t) = A_1(t)$$

• Note:

$$a(0) = 1$$
The accumulation function

• \(a(t) \) ... the accumulation function, i.e., the amount function if the principal \(K \) is one dollar

• Formally: If the principal is one dollar, we write

\[
a(t) = A_1(t)
\]

• Note:

\[
a(0) = 1
\]
The accumulation function

- \(a(t) \) ... the **accumulation function**, i.e., the amount function if the principal \(K \) is one dollar

- *Formally:* If the principal is one dollar, we write

\[
a(t) = A_1(t)
\]

- **Note:**

\[
a(0) = 1
\]
The relationship between the amount and the accumulation functions

- We expect to have that
 \[A_K(t) = Ka(t) \]

- This is common, but is NOT always the case (the investment scheme may include a tiered growth structure).
- However, since the above equality holds in most cases, we will assume that it is true unless it is explicitly noted otherwise.
The relationship between the amount and the accumulation functions

- We expect to have that

\[A_K(t) = Ka(t) \]

- This is *common*, but is **NOT** always the case (the investment scheme may include a *tiered* growth structure).

- However, since the above equality holds in most cases, we will assume that it is true unless it is *explicitly* noted otherwise.
The relationship between the amount and the accumulation functions

- We expect to have that

\[A_K(t) = Ka(t) \]

- This is *common*, but is **NOT** always the case (the investment scheme may include a *tiered* growth structure).

- However, since the above equality holds in most cases, we will assume that it is true unless it is *explicitly* noted otherwise.
The increase/decrease of the amount and the accumulation functions

• It is natural to assume that both a and A_K increase in the time variable.
 • Such increase may be, for example:
 ◦ continuous and linear;
 ◦ discrete (end of the year, e.g.);
 ◦ continuous and exponential
 • However, there are investment schemes in which it is possible to lose money over time (e.g., if one invests in a fund that trades in the market or in a restaurant that takes time to pay off)
 • Assignment: Examples 1.3.2-4 in the textbook.
The increase/decrease of the amount and the accumulation functions

- It is natural to assume that both a and A_K increase in the time variable.
- Such increase may be, for example:
 - continuous and linear;
 - discrete (end of the year, e.g.);
 - continuous and exponential
- However, there are investment schemes in which it is possible to lose money over time (e.g., if one invests in a fund that trades in the market or in a restaurant that takes time to pay off)
- Assignment: Examples 1.3.2-4 in the textbook.
The increase/decrease of the amount and the accumulation functions

- It is natural to assume that both a and A_K increase in the time variable.
- Such increase may be, for example:
 - continuous and linear;
 - discrete (end of the year, e.g.);
 - continuous and exponential
- However, there are investment schemes in which it is possible to lose money over time (e.g., if one invests in a fund that trades in the market or in a restaurant that takes time to pay off)
- Assignment: Examples 1.3.2-4 in the textbook.
The increase/decrease of the amount and the accumulation functions

- It is natural to assume that both a and A_K increase in the time variable.
- Such increase may be, for example:
 - continuous and linear;
 - discrete (end of the year, e.g.);
 - continuous and exponential
- However, there are investment schemes in which it is possible to lose money over time (e.g., if one invests in a fund that trades in the market or in a restaurant that takes time to pay off)
- Assignment: Examples 1.3.2-4 in the textbook.
The increase/decrease of the amount and the accumulation functions

- It is natural to assume that both a and A_K increase in the time variable.
- Such increase may be, for example:
 - continuous and linear;
 - discrete (end of the year, e.g.);
 - continuous and exponential
- However, there are investment schemes in which it is possible to lose money over time (e.g., if one invests in a fund that trades in the market or in a restaurant that takes time to pay off)
- Assignment: Examples 1.3.2-4 in the textbook.
The increase/decrease of the amount and the accumulation functions

- It is natural to assume that both a and A_K increase in the time variable.
- Such increase may be, for example:
 - continuous and linear;
 - discrete (end of the year, e.g.);
 - continuous and exponential
- However, there are investment schemes in which it is possible to lose money over time (e.g., if one invests in a fund that trades in the market or in a restaurant that takes time to pay off)

Assignment: Examples 1.3.2-4 in the textbook.
The increase/decrease of the amount and the accumulation functions

• It is natural to assume that both a and A_K increase in the time variable.
• Such increase may be, for example:
 ◦ continuous and linear;
 ◦ discrete (end of the year, e.g.);
 ◦ continuous and exponential
• However, there are investment schemes in which it is possible to **lose** money over time (e.g., if one invests in a fund that trades in the market or in a restaurant that takes time to pay off)
• **Assignment:** Examples 1.3.2-4 in the textbook.
The effective interest rate

Let \(t_2 > t_1 \geq 0 \)

- \(A_K(t_2) - A_K(t_1) \) ... the amount of interest earned between time \(t_1 \) and time \(t_2 \)
- \(i_{[t_1,t_2]} \) ... the effective interest rate for the interval \([t_1, t_2] \), i.e.,
 \[
i_{[t_1,t_2]} = \frac{a(t_2) - a(t_1)}{a(t_1)}\]

- **IF** \(A_K(t) = Ka(t) \), then we also have
 \[
i_{[t_1,t_2]} = \frac{A_K(t_2) - A_K(t_1)}{A_K(t_1)}\]

- The interval \([n-1, n]\) is called the \(n^{th} \) time period (for \(n \) a positive integer)
- **Notation:**
 \[
i_n = i_{[n-1,n]} = \frac{a(n) - a(n-1)}{a(n-1)}\]

- Hence,
 \[
a(n) = a(n-1)(1 + i_n)\]

and \(i_1 = a(1) - 1 \)
The effective interest rate

Let \(t_2 > t_1 \geq 0 \)

- \(A_K(t_2) - A_K(t_1) \) \ldots the amount of interest earned between time \(t_1 \) and time \(t_2 \)

- \(i_{[t_1, t_2]} \) \ldots the effective interest rate for the interval \([t_1, t_2]\), i.e.,

\[
i_{[t_1, t_2]} = \frac{a(t_2) - a(t_1)}{a(t_1)}
\]

- IF \(A_K(t) = Ka(t) \), then we also have

\[
i_{[t_1, t_2]} = \frac{A_K(t_2) - A_K(t_1)}{A_K(t_1)}
\]

- The interval \([n - 1, n]\) is called the \(n^{th} \) time period (for \(n \) a positive integer)

- Notation:

\[
i_n = i_{[n-1, n]} = \frac{a(n) - a(n-1)}{a(n-1)}
\]

- Hence,

\[
a(n) = a(n-1)(1 + i_n)
\]

and \(i_1 = a(1) - 1 \)
The effective interest rate

Let \(t_2 > t_1 \geq 0 \)

- \(A_K(t_2) - A_K(t_1) \) ... the amount of interest earned between time \(t_1 \) and time \(t_2 \)
- \(i_{[t_1,t_2]} \) ... the effective interest rate for the interval \([t_1, t_2] \), i.e.,

\[
i_{[t_1,t_2]} = \frac{a(t_2) - a(t_1)}{a(t_1)}
\]

- **IF** \(A_K(t) = Ka(t) \), then we also have

\[
i_{[t_1,t_2]} = \frac{A_K(t_2) - A_K(t_1)}{A_K(t_1)}
\]

- The interval \([n - 1, n] \) is called the \(n^{th} \) time period (for \(n \) a positive integer)
- **Notation:**

\[
i_n = i_{[n-1,n]} = \frac{a(n) - a(n-1)}{a(n-1)}
\]

- Hence,

\[
a(n) = a(n-1)(1 + i_n)
\]

and \(i_1 = a(1) - 1 \)
The effective interest rate

Let $t_2 > t_1 \geq 0$

- $A_K(t_2) - A_K(t_1)$... the amount of interest earned between time t_1 and time t_2
- $i_{[t_1,t_2]}$... the effective interest rate for the interval $[t_1, t_2]$, i.e.,

$$i_{[t_1,t_2]} = \frac{a(t_2) - a(t_1)}{a(t_1)}$$

- IF $A_K(t) = Ka(t)$, then we also have

$$i_{[t_1,t_2]} = \frac{A_K(t_2) - A_K(t_1)}{A_K(t_1)}$$

- The interval $[n - 1, n]$ is called the n^{th} time period (for n a positive integer)
- Notation:

$$i_n = i_{[n-1,n]} = \frac{a(n) - a(n-1)}{a(n-1)}$$

- Hence,

$$a(n) = a(n-1)(1 + i_n)$$

and $i_1 = a(1) - 1$
The effective interest rate

Let \(t_2 > t_1 \geq 0 \)

- \(A_K(t_2) - A_K(t_1) \) ... the amount of interest earned between time \(t_1 \) and time \(t_2 \)
- \(i_{[t_1, t_2]} \) ... the effective interest rate for the interval \([t_1, t_2]\), i.e.,
 \[
 i_{[t_1, t_2]} = \frac{a(t_2) - a(t_1)}{a(t_1)}
 \]

- **IF** \(A_K(t) = Ka(t) \), then we also have
 \[
 i_{[t_1, t_2]} = \frac{A_K(t_2) - A_K(t_1)}{A_K(t_1)}
 \]

- The interval \([n - 1, n]\) is called the \(n^{th} \) time period (for \(n \) a positive integer)
- **Notation:**
 \[
 i_n = i_{[n-1, n]} = \frac{a(n) - a(n-1)}{a(n-1)}
 \]

- Hence,
 \[
 a(n) = a(n-1)(1 + i_n)
 \]
 and \(i_1 = a(1) - 1 \)
The effective interest rate

Let $t_2 > t_1 \geq 0$

- $A_K(t_2) - A_K(t_1)$... the amount of interest earned between time t_1 and time t_2
- $i_{[t_1,t_2]}$... the effective interest rate for the interval $[t_1, t_2]$, i.e.,

$$i_{[t_1,t_2]} = \frac{a(t_2) - a(t_1)}{a(t_1)}$$

- **IF** $A_K(t) = Ka(t)$, then we also have

$$i_{[t_1,t_2]} = \frac{A_K(t_2) - A_K(t_1)}{A_K(t_1)}$$

- The interval $[n - 1, n]$ is called the n^{th} time period (for n a positive integer)
- **Notation:**

$$i_n = i_{[n-1,n]} = \frac{a(n) - a(n - 1)}{a(n - 1)}$$

- Hence,

$$a(n) = a(n - 1)(1 + i_n)$$

and $i_1 = a(1) - 1$
The effective interest rate

Let \(t_2 > t_1 \geq 0 \)

- \(A_K(t_2) - A_K(t_1) \ldots \) the **amount of interest** earned between time \(t_1 \) and time \(t_2 \)
- \(i_{[t_1,t_2]} \ldots \) the **effective interest rate** for the interval \([t_1, t_2] \), i.e.,

\[
i_{[t_1,t_2]} = \frac{a(t_2) - a(t_1)}{a(t_1)}
\]

- **IF** \(A_K(t) = Ka(t) \), then we also have

\[
i_{[t_1,t_2]} = \frac{A_K(t_2) - A_K(t_1)}{A_K(t_1)}
\]

- The interval \([n-1, n] \) is called the \(n^{th} \) **time period** (for \(n \) a positive integer)
- **Notation:**

\[
i_n = i_{[n-1,n]} = \frac{a(n) - a(n-1)}{a(n-1)}
\]

- Hence,

\[
a(n) = a(n-1)(1 + i_n)
\]

and \(i_1 = a(1) - 1 \)
The Growth of Money

1. Interest

2. Accumulation and amount functions

3. Simple Interest/Linear Accumulation Functions

4. Discount functions/The time value of money

5. Simple discount
In this case, \(a \) is assumed linear and, thus, must be of the form

\[
a(t) = 1 + st
\]

for a certain constant \(s \)

- \(s \) ... the simple interest rate
- Note: \(s = i_1 \)
- \(A_K(t) = K(1 + st) \) ... the amount function for \(K \) invested by simple interest at rate \(s \)
- \(a(t) = 1 + st \) ... the simple interest accumulation function at rate \(s \)
- Let us look at an example ...
Linear $a(t)$

- In this case, a is assumed linear and, thus, must be of the form

$$a(t) = 1 + st$$

for a certain constant s

- s ... the **simple interest rate**

 - Note: $s = i_1$
 - $A_K(t) = K(1 + st)$... the amount function for K invested by **simple interest** at rate s
 - $a(t) = 1 + st$... the simple interest accumulation function at rate s
 - Let us look at an example ...
In this case, \(a \) is assumed linear and, thus, must be of the form

\[
a(t) = 1 + st
\]

for a certain constant \(s \)

- \(s \) ... the simple interest rate
- Note: \(s = i_1 \)
- \(A_K(t) = K(1 + st) \) ... the amount function for \(K \) invested by simple interest at rate \(s \)
- \(a(t) = 1 + st \) ... the simple interest accumulation function at rate \(s \)
- Let us look at an example ...
Linear $a(t)$

- In this case, a is assumed linear and, thus, must be of the form

$$a(t) = 1 + st$$

for a certain constant s

- $s \ldots$ the simple interest rate

- Note: $s = i_1$

- $A_K(t) = K(1 + st) \ldots$ the amount function for K invested by simple interest at rate s

- $a(t) = 1 + st \ldots$ the simple interest accumulation function at rate s

- Let us look at an example \ldots
Linear $a(t)$

- In this case, a is assumed linear and, thus, must be of the form

$$a(t) = 1 + st$$

for a certain constant s

- s ... the simple interest rate

- Note: $s = i_1$

- $A_K(t) = K(1 + st)$... the amount function for K invested by simple interest at rate s

- $a(t) = 1 + st$... the simple interest accumulation function at rate s

- Let us look at an example ...
Linear $a(t)$

- In this case, a is assumed linear and, thus, must be of the form

 $$a(t) = 1 + st$$

 for a certain constant s
- s ... the simple interest rate
- Note: $s = i_1$
- $A_K(t) = K(1 + st)$... the amount function for K invested by simple interest at rate s
- $a(t) = 1 + st$... the simple interest accumulation function at rate s
- Let us look at an example ...

On \(i_n \)

- In the simple interest case:

\[
i_n = \frac{s}{1 + s(n - 1)}
\]

- So, \(i_n \) is decreasing in \(n \) (see Example 1.4.2 in the textbook for an illustration of this fact)

- Moreover,

\[
i_n \to 0, \text{ as } n \to \infty
\]

- So, simple interest is not convenient for long duration loans.
On i_n

- In the simple interest case:

 $$i_n = \frac{s}{1 + s(n - 1)}$$

- So, i_n is **decreasing** in n (see Example 1.4.2 in the textbook for an illustration of this fact)

- Moreover,

 $$i_n \to 0, \text{ as } n \to \infty$$

- So, simple interest is not convenient for long duration loans.
• In the simple interest case:

\[i_n = \frac{s}{1 + s(n - 1)} \]

• So, \(i_n \) is decreasing in \(n \) (see Example 1.4.2 in the textbook for an illustration of this fact)

• Moreover,

\[i_n \to 0, \text{ as } n \to \infty \]

• So, simple interest is not convenient for long duration loans.
On i_n

- In the simple interest case:
 \[i_n = \frac{s}{1 + s(n - 1)} \]
- So, i_n is **decreasing** in n (see Example 1.4.2 in the textbook for an illustration of this fact)
- Moreover,
 \[i_n \to 0, \text{ as } n \to \infty \]
- So, simple interest is not convenient for long duration loans.
Methods for measuring the time/length of the loan in years

- **Exact simple interest aka ”actual/actual”**

 The loan term D expressed in days and divided by 365

- **Ordinary simple interest aka ”30/360”**

 The loan term D expressed in days assuming that each month has 30 days and then divided by 360

- **The Banker’s rule aka ”actual/360”**

 The loan term D expressed in (actual) days and then divided by 360
Methods for measuring the time/length of the loan in years

- Exact simple interest aka "actual/actual"
 The loan term D expressed in days and divided by 365

- Ordinary simple interest aka "30/360"
 The loan term D expressed in days assuming that each month has 30 days and then divided by 360

- The Banker’s rule aka "actual/360"
 The loan term D expressed in (actual) days and then divided by 360
Methods for measuring the time/length of the loan in years

- **Exact simple interest aka ”actual/actual“**
 The loan term D expressed in days and divided by 365

- **Ordinary simple interest aka ”30/360“**
 The loan term D expressed in days assuming that each month has 30 days and then divided by 360

- **The Banker’s rule aka ”actual/360“**
 The loan term D expressed in (actual) days and then divided by 360
The Growth of Money

1. Interest

2. Accumulation and amount functions

3. Simple Interest/Linear Accumulation Functions

4. Discount functions/The time value of money

5. Simple discount
The discount function

• $v(t)$...the discount function, i.e.,

$$v(t) = \frac{1}{a(t)}$$

• In words, $v(t)$ is the amount of money that one should invest at time 0 in order to have $1 at time t
• For example, in the simple interest case, we have that

$$v(t) = \frac{1}{1 + st}$$

• Question: What if one wishes to invest a certain amount not at time 0 but at a later time $t_1 > 0$ - with the goal of earning S at a still later time t_2?
• Let us draw the time line
• One needs to invest (at time t_1)

$$Sv(t_2)a(t_1) = S\frac{a(t_1)}{a(t_2)} = S\frac{v(t_2)}{v(t_1)}$$

• Assignment: Examples 1.7.2, 1.7.3 in the textbook
The discount function

- $v(t)$...the discount function, i.e.,

$$v(t) = \frac{1}{a(t)}$$

- In words, $v(t)$ is the amount of money that one should **invest** at time 0 in order to have $1 at time t
- For example, in the simple interest case, we have that

$$v(t) = \frac{1}{1 + st}$$

- **Question:** What if one wishes to invest a certain amount not at time 0 but at a later time $t_1 > 0$ - with the goal of earning S at a still later time t_2?
- Let us draw the time line
- One needs to invest (at time t_1)

$$Sv(t_2)a(t_1) = S\frac{a(t_1)}{a(t_2)} = S\frac{v(t_2)}{v(t_1)}$$

- **Assignment:** Examples 1.7.2, 1.7.3 in the textbook
The discount function

- \(v(t) \) ... the discount function, i.e.,

\[
v(t) = \frac{1}{a(t)}
\]

- In words, \(v(t) \) is the amount of money that one should **invest** at time 0 in order to have $1 at time \(t \)
- For example, in the simple interest case, we have that

\[
v(t) = \frac{1}{1 + st}
\]

- Question: What if one wishes to invest a certain amount not at time 0 but at a later time \(t_1 > 0 \) - with the goal of earning S at a still later time \(t_2 \)?
- Let us draw the time line
- One needs to invest (at time \(t_1 \))

\[
Sv(t_2)a(t_1) = Sv(t_2)\frac{a(t_1)}{a(t_2)} = S\frac{v(t_2)}{v(t_1)}
\]

- Assignment: Examples 1.7.2, 1.7.3 in the textbook
The discount function

• $v(t)$...the discount function, i.e.,

$$v(t) = \frac{1}{a(t)}$$

• In words, $v(t)$ is the amount of money that one should invest at time 0 in order to have $1 at time t
• For example, in the simple interest case, we have that

$$v(t) = \frac{1}{1 + st}$$

• Question: What if one wishes to invest a certain amount not at time 0 but at a later time $t_1 > 0$ - with the goal of earning S at a still later time t_2?
• Let us draw the time line
• One needs to invest (at time t_1)

$$Sv(t_2)a(t_1) = S \frac{a(t_1)}{a(t_2)} = S \frac{v(t_2)}{v(t_1)}$$

• Assignment: Examples 1.7.2, 1.7.3 in the textbook
The discount function

• \(v(t) \) ... the discount function, i.e.,

\[
v(t) = \frac{1}{a(t)}
\]

• In words, \(v(t) \) is the amount of money that one should **invest** at time 0 in order to have $1 at time \(t \)

• For example, in the simple interest case, we have that

\[
v(t) = \frac{1}{1 + st}
\]

• **Question:** What if one wishes to invest a certain amount not at time 0 but at a later time \(t_1 > 0 \) - with the goal of earning S at a still later time \(t_2 \)?

• Let us draw the time line

• One needs to invest (at time \(t_1 \))

\[
Sv(t_2)a(t_1) = S \frac{a(t_1)}{a(t_2)} = S \frac{v(t_2)}{v(t_1)}
\]

• **Assignment:** Examples 1.7.2, 1.7.3 in the textbook
The discount function

• $v(t)$...the discount function, i.e.,

$$v(t) = \frac{1}{a(t)}$$

• In words, $v(t)$ is the amount of money that one should **invest** at time 0 in order to have $1 at time t

• For example, in the simple interest case, we have that

$$v(t) = \frac{1}{1 + st}$$

• **Question:** What if one wishes to invest a certain amount not at time 0 but at a later time $t_1 > 0$ - with the goal of earning S at a still later time t_2?

• Let us draw the time line

• One needs to invest (at time t_1)

$$Sv(t_2)a(t_1) = S\frac{a(t_1)}{a(t_2)} = S\frac{v(t_2)}{v(t_1)}$$

• **Assignment:** Examples 1.7.2, 1.7.3 in the textbook
The discount function

- \(v(t) \) is the discount function, i.e.,
 \[
 v(t) = \frac{1}{a(t)}
 \]

- In words, \(v(t) \) is the amount of money that one should invest at time 0 in order to have $1 at time \(t \).
- For example, in the simple interest case, we have that
 \[
 v(t) = \frac{1}{1 + st}
 \]

Question: What if one wishes to invest a certain amount not at time 0 but at a later time \(t_1 > 0 \) - with the goal of earning S at a still later time \(t_2 \)?

- Let us draw the time line
- One needs to invest (at time \(t_1 \))
 \[
 S v(t_2) a(t_1) = S \frac{a(t_1)}{a(t_2)} = S \frac{v(t_2)}{v(t_1)}
 \]

Assignment: Examples 1.7.2, 1.7.3 in the textbook
• \(PV_{a(t)}(\$L \text{ at } t_0) \) ... present value with respect to \(a(t) \) of \(\$L \) to be received at time \(t_0 \), i.e.,

\[
PV_{a(t)}(\$L \text{ at } t_0) = \$Lv(t_0)
\]

if the growth is proportional to the invested amount

• Convention: If it is obvious which accumulation function \(a(t) \) we use, we suppress it from the notation for the present value
• $PV_{a(t)}(\$L \text{ at } t_0)$... present value with respect to $a(t)$ of $\$L$ to be received at time t_0, i.e.,

$$PV_{a(t)}(\$L \text{ at } t_0) = \$Lv(t_0)$$

if the growth is proportional to the invested amount

• Convention: If it is obvious which accumulation function $a(t)$ we use, we suppress it from the notation for the present value
The Growth of Money

1. Interest
2. Accumulation and amount functions
3. Simple Interest/Linear Accumulation Functions
4. Discount functions/The time value of money
5. Simple discount
Discount rate

- $D \ldots$ the **discount** per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e.,

 If an investor (lender) lends 1 for one basic period at a discount rate D - this means that in order to obtain 1 at time 0, the borrower must **pay immediately** D to the lender.

- Note that the “net-effect” for the borrower is that they get to use

 $$$(1 - D)$$

 at time zero

- The initial fee is proportional to the amount of money borrowed, i.e., if one wants to borrow K, one needs to pay DK to the lender

- The value DK is called the **amount of discount**
Discount rate

- D ... the **discount** per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e.,

 If an investor (lender) lends 1 for one basic period at a discount rate D - this means that in order to obtain 1 at time 0, the borrower must **pay immediately** D to the lender.

- Note that the “net-effect” for the borrower is that they get to use

 $$ (1 - D) $$

 at time zero

- The initial fee is proportional to the amount of money borrowed, i.e., if one wants to borrow K, one needs to pay DK to the lender.

- The value DK is called the amount of discount.
Discount rate

- D ... the discount per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e.,

 If an investor (lender) lends 1 for one basic period at a discount rate D - this means that in order to obtain 1 at time 0, the borrower must pay immediately D to the lender.

- Note that the “net-effect” for the borrower is that they get to use $(1 - D)$ at time zero

- The initial fee is proportional to the amount of money borrowed, i.e., if one wants to borrow K, one needs to pay DK to the lender.

- The value DK is called the amount of discount
Discount rate

- D ... the **discount** per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e.,

 If an investor (lender) lends 1 for one basic period at a discount rate D, this means that in order to obtain 1 at time 0, the borrower must **pay immediately** D to the lender.

- Note that the “net-effect” for the borrower is that they get to use

 $$(1 - D)$$

 at time zero

- The initial fee is proportional to the amount of money borrowed, i.e., if one wants to borrow K, one needs to pay DK to the lender

- The value DK is called the **amount of discount**
Discount rate

- D ... the **discount** per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e.,

 If an investor (lender) lends 1 for one basic period at a discount rate D - this means that in order to obtain 1 at time 0, the borrower must **pay immediately** D to the lender.

- Note that the “net-effect” for the borrower is that they get to use $(1 - D)$ at time zero

- The initial fee is proportional to the amount of money borrowed, i.e., if one wants to borrow K, one needs to pay DK to the lender
- The value DK is called the **amount of discount**
Simple discount

- $D \ldots$ the discount per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e., D is uniquely determined by

$$a(t) = \frac{1}{1 - tD}$$

or, equivalently

$$v(t) = 1 - tD$$

- Note that the discount function $v(t)$ is linear in this case
- **Caveat:** This situation is not the same as the one when the accumulation function is linear.
Simple discount

- D ... the discount per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e., D is uniquely determined by

\[
a(t) = \frac{1}{1 - tD}
\]

or, equivalently

\[
v(t) = 1 - tD
\]

- Note that the discount function $v(t)$ is linear in this case
- **Caveat:** This situation is **not** the same as the one when the accumulation function is linear.
Simple discount

• $D \ldots$ the \textbf{discount} per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e., D is uniquely determined by

$$a(t) = \frac{1}{1 - tD}$$

or, equivalently

$$v(t) = 1 - tD$$

• Note that the discount function $v(t)$ is linear in this case

• \textbf{Caveat:} This situation is not the same as the one when the accumulation function is linear.
Simple discount

- D ... the discount per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e., D is uniquely determined by

$$a(t) = \frac{1}{1 - tD}$$

or, equivalently

$$v(t) = 1 - tD$$

- Note that the discount function $v(t)$ is linear in this case

- **Caveat:** This situation is **not** the same as the one when the accumulation function is linear.
$A_K(t)$ and $a(t)$

- More vocabulary:

\[A_K(t) = \frac{K}{1 - dt} \]

is called the amount function for K invested by simple discount at a rate d

\[a(t) = \frac{1}{1 - dt} \]

is called the simple discount accumulation function at a rate d

- Let us draw their graphs
- Note that it only makes sense to talk about loan terms that are shorter than $1/d$
More vocabulary:

\[A_K(t) = \frac{K}{1 - dt} \]

is called the amount function for K invested by simple discount at a rate d

\[a(t) = \frac{1}{1 - dt} \]

is called the simple discount accumulation function at a rate d

- Let us draw their graphs
- Note that it only makes sense to talk about loan terms that are shorter than $1/d$
$A_K(t)$ and $a(t)$

- More vocabulary:

$$A_K(t) = \frac{K}{1 - dt}$$

is called the amount function for K invested by simple discount at a rate d

$$a(t) = \frac{1}{1 - dt}$$

is called the simple discount accumulation function at a rate d

- Let us draw their graphs
- Note that it only makes sense to talk about loan terms that are shorter than $1/d$
$A_K(t)$ and $a(t)$

• More vocabulary:

$$A_K(t) = \frac{K}{1 - dt}$$

is called the amount function for K invested by simple discount at a rate d

$$a(t) = \frac{1}{1 - dt}$$

is called the simple discount accumulation function at a rate d

• Let us draw their graphs
• Note that it only makes sense to talk about loan terms that are shorter than $1/d$