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Samuelson’s Model
The Black-Scholes Assumption About

Stock Prices

• The original paper by Black and Scholes assumes that the price of
the underlying asset is a stochastic process {St} which is solves the
following stochastic differential equation (in the differential form):

dSt = St [α dt + σ dZt ]

where

• α . . . denotes the continuously compounded expected return on the
stock;

• σ . . . denotes the volatility;

• {Zt} . . . is a standard Brownian motion

• In other words, {St} is a geometric Brownian motion
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On the distribution of the stock price at a
given time

• Recall the example from class to conclude that

ln(St) ∼ N

(
ln(S0) + (α− 1

2
)σ2)t, σ2t

)
, for every t

• In other words, at any time t the stock-price random variable St is
log-normal

• The above means that we assume that the continuously compounded
returns are modeled by a normally distributed random variable.
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More Heuristics:
Relative Importance of the Drift and Noise

• Recall the SDE which defines the geometric B.M.

dSt = St [α dt + σ dZt ]

• Consider a time period of length h and the ratio of the per-period
standard deviation to the per-period drift, i.e.,

σSt

√
h

αSth
=

σ

α
√

h

• For h infinitesimaly small the above ration diverges.

• We may interpret this by saying that for short time-periods the
“random component” of the process {St} is dominant.

• As the observed period grows longer, the drift (mean) of the
stochastic process {St} has a greater effect
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Theorem [Ito’s Product Rule]

• Consider two Ito proocesses {Xt} and {Yt}. Then

d(Xt · Yt) = Xt dYt + Yt dXt + dXt dYt .

• Note: We calculate the last term using the multiplication table with
“dt’s” and “dBt ’s”
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Martingality

• Under some integrability and regularity conditions on the integrand,
the process {Yt} defined by

Yt =

∫ t

0

νs dBS ,

where {Bs} is a standard B.M. is a martingale.

• In particular

E[Yt ] = E
[∫ t

0

νs dBS

]
= 0, for every t
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Ito Isometry

• Under some integrability and regularity conditions on the integrand
ν, let us define the process {Yt} as

Yt =

∫ t

0

νs dBS ,

where {Bs} is a standard B.M. Then

E[Y 2
t ] = E[

∫ t

0

ν2
s ds]



Continuity

• Under some integrability and regularity conditions on the integrand
ν, let us define the process {Yt} as

Yt =

∫ t

0

νs dBS ,

where {Bs} is a standard B.M. Then the paths of {Yt} are (almost
surely) continuous.



Linearity

• Moreover, for a constant c , we have that

cYt =

∫ t

0

(cνs) dBS ,

• Additionally, if {At} is a stochastic process given as

At =

∫ t

0

ξs dBs ,

for an integrand {ξt} conforming to the integrability and regularity
conditions necessary for the sotchastic integral to be well-defined,
then

Yt ± At =

∫ t

0

(νs ± ξS) dBS
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The Set-Up

• Consider two stock prices {St} and {Qt}. Suppose that they satisfy
the following system of SDEs

dSt

St
= αS dt + σs dWt

dQt

Qt
= αQ dt + σQ

[
ρdWt +

√
1− ρ2 dW ′

t

]
where ρ ∈ [−1, 1], αS , αQ , σS > 0 and σQ > 0 are given constants
and {Wt} and {W ′

t } are independent standard Brownian motions.

• Theorem: If W and W ′ are independent, then dWt dW ′
t = 0.

• We can now add the above to our multiplication table.
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A New Standard Brownian Motion
• Define

W̃t = ρWt +
√

1− ρ2W ′
t .

• {W̃t} is an almost everywhere continuous process with W̃0 = 0

• One can prove that W̃ is a standard Brownian motion. Now, we can
write

dQt

Qt
= αQ dt + σQ dW̃t

• According to Ito’s Product Rule and the fact that W and W ′ are
independent

d(WtW̃t) = Wt dW̃t + W̃t dWt + ρ dt

• In the integral form the above reads as

WtW̃t =

∫ t

0

Ws dW̃s +

∫ t

0

W̃s dWs + ρt
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On the Correlation of the two Brownian
Motions

• For covenience, let us repeat that

WtW̃t =

∫ t

0

Ws dW̃s +

∫ t

0

W̃s dWs + ρt

• Using the fact that the stochastic integral is a martingale, for every
t, we have

E[WtW̃t ] = ρt.

• Recalling that the quadratic variaton of any standard B.M. is t, we
see that ρ is the correlation between the Brownian motions W and
W̃
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The Ornstein-Uhlenbeck Process

• Along with the processes we discussed so far, consider a stochastic
process {Xt} which satisfies

dXt = [α− xt ] dt + σ dZt ,

where α and σ are given constants and {Zt} is a standard Brownian
motion.

• The process above is called the mean reverting process (Why??)

• In particular, if we set α = 0, the resulting process is called the
Ornstein-Uhlenbeck process
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