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Samuelson’s Model
The Black-Scholes Assumption About
Stock Prices

The original paper by Black and Scholes assumes that the price of
the underlying asset is a stochastic process {S;} which is solves the
following stochastic differential equation (in the differential form):

dSt = St[Oé dt + 0o dZt]

where

« ... denotes the continuously compounded expected return on the
stock:

o ... denotes the volatility;
{Z;} ... is a standard Brownian motion

In other words, {S;} is a geometric Brownian motion
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On the distribution of the stock price at a
given time

e Recall the example from class to conclude that

1
In(S;) ~ N (In(So) + (o — E)Uz)t, 0’2t> , for every t
e In other words, at any time t the stock-price random variable S; is
log-normal

e The above means that we assume that the continuously compounded
returns are modeled by a normally distributed random variable.
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More Heuristics:
Relative Importance of the Drift and Noise
Recall the SDE which defines the geometric B.M.
dSt = St[a dt + o dZt]

Consider a time period of length h and the ratio of the per-period
standard deviation to the per-period drift, i.e.,

aSivVh o
Oésth Oé\/ﬁ

For h infinitesimaly small the above ration diverges.
We may interpret this by saying that for short time-periods the
“random component” of the process {S;} is dominant.

As the observed period grows longer, the drift (mean) of the
stochastic process {S;} has a greater effect
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Theorem [Ito’s Product Rule]

o Consider two Ito proocesses {X;} and {Y;}. Then

d(Xt . Yl‘) - Xt dyt + Yt dXt + dXt dYt



Theorem [Ito’s Product Rule]

o Consider two Ito proocesses {X;} and {Y;}. Then
d(X: - Yy) = Xe dYy + Y dX; + dX;: dYs.

e Note: We calculate the last term using the multiplication table with
“dt's” and “dB,'s"
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e In particular
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lto Isometry

e Under some integrability and regularity conditions on the integrand
v, let us define the process {Y;} as

t
Yt:/ Vs dBs,
0

where {B;} is a standard B.M. Then

E[Y?] = E[/Otuf ds]



Continuity

e Under some integrability and regularity conditions on the integrand
v, let us define the process {Y;} as

t
Y: = / Vs dBSa
0

where {Bs} is a standard B.M. Then the paths of {Y;} are (almost
surely) continuous.
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Linearity

e Moreover, for a constant ¢, we have that

t
CYt:/ (Cl/s)st,
0

o Additionally, if {A;} is a stochastic process given as

t
A = / ¢. dB.,
0

for an integrand {&;} conforming to the integrability and regularity
conditions necessary for the sotchastic integral to be well-defined,
then

t
YtiAt :/ (l/sifs) st
0



Brownian Motion and Ito’s Lemma

® Correlated Stock Prices



The Set-Up

e Consider two stock prices {S;} and {Q;}. Suppose that they satisfy
the following system of SDEs
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The Set-Up

e Consider two stock prices {S;} and {Q;}. Suppose that they satisfy
the following system of SDEs

It _ e dt + 00 AW,

St

d

?Q: =agdt+og {det +/1—p? th’]

where p € [-1,1],as,ag,05 > 0 and o > 0 are given constants
and {W;} and {W/} are independent standard Brownian motions.

e Theorem: If W and W’ are independent, then dW, dW] = 0.

e We can now add the above to our multiplication table.



A New Standard Brownian Motion

e Define

Wt :th+ \/ 1 —,02th
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A New Standard Brownian Motion
Define

W, = pW; + /1 — p2W,.

{W,} is an almost everywhere continuous process with Wy = 0
One can prove that W is a standard Brownian motion. Now, we can
write

dQ:
Q:

According to Ito’s Product Rule and the fact that W and W’ are
independent

Zant—l-UQth

d(WeW,) = Wi dW; + W, dW; + p dt

In the integral form the above reads as

t t
thfvt:/ Wsdl7|/s+/ W, dW, + pt
0 0
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e For covenience, let us repeat that
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t, we have



On the Correlation of the two Brownian
Motions

e For covenience, let us repeat that

t t
th"vt:/ Wsd\fvs+/ W, dW, + pt
0 0

e Using the fact that the stochastic integral is a martingale, for every
t, we have

e Recalling that the quadratic variaton of any standard B.M. is t, we

see that p is the correlation between the Brownian motions W and
w
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The Ornstein-Uhlenbeck Process

e Along with the processes we discussed so far, consider a stochastic
process {X;} which satisfies

dXt = [OZ — Xt] dt + UdZt,

where « and o are given constants and {Z;} is a standard Brownian
motion.
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The Ornstein-Uhlenbeck Process

Along with the processes we discussed so far, consider a stochastic
process {X;} which satisfies

dXt = [CY — Xt] dt + UdZt,

where « and o are given constants and {Z;} is a standard Brownian
motion.

The process above is called the mean reverting process (Why?7)

In particular, if we set & = 0, the resulting process is called the
Ornstein-Uhlenbeck process
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