The Binomial Tree and Lognormality
The Binomial Tree and Lognormality

• The usefulness of the binomial pricing model hinges on the binomial tree providing a reasonable representation of the stock price distribution

• The binomial tree approximates a lognormal distribution
The Random Walk Model

• It is often said that stock prices follow a random walk

• Imagine that we flip a coin repeatedly
 – Let the random variable Y denote the outcome of the flip
 – If the coin lands displaying a head, $Y = 1$; otherwise, $Y = -1$
 – If the probability of a head is $1/2$, we say the coin is fair
 – After n flips, with the i^{th} flip denoted Y_i, the cumulative total, Z_n, is

$$Z_n = \sum_{i=1}^{n} Y_i$$ (11.8)
The Random Walk Model (cont’d)

• We can represent the process followed by Z_n in terms of the change in Z_n

\[Z_n - Z_{n-1} = Y_n \]

or

Heads: $Z_n - Z_{n-1} = +1$

Tails: $Z_n - Z_{n-1} = -1$
The Random Walk Model (cont’d)

• A random walk, where with heads, the change in Z is 1, and with tails, the change in Z is -1.

![Cumulative Counter, Z diagram](image)
The Random Walk Model (cont’d)

• The idea that asset prices should follow a random walk was articulated in Samuelson (1965)

• In efficient markets, an asset price should reflect all available information. In response to new information the price is equally likely to move up or down, as with the coin flip

• The price after a period of time is the initial price plus the cumulative up and down movements due to new information
Modeling Stock Prices
As a Random Walk

• The above description of a random walk is not a satisfactory description of stock price movements. There are at least three problems with this model
 – If by chance we get enough cumulative down movements, the stock price will become negative
 – The magnitude of the move ($1) should depend upon how quickly the coin flips occur and the level of the stock price
 – The stock, on average, should have a positive return. However, the random walk model taken literally does not permit this

• The binomial model is a variant of the random walk model that solves all of these problems
Continuously Compounded Returns

• The binomial model assumes that continuously compounded returns are a random walk

• Some important properties of continuously compounded returns
 – The logarithmic function computes returns from prices
 – The exponential function computes prices from returns
 – Continuously compounded returns are additive
 – Continuously compounded returns can be less than −100%
The Standard Deviation of Returns

• Suppose the continuously compounded return over month i is $r_{\text{monthly},i}$. The annual return is

$$r_{\text{annual}} = \sum_{i=1}^{12} r_{\text{monthly},i}$$

• The variance of the annual return is (11.14)

$$Var(r_{\text{annual}}) = Var\left(\sum_{i=1}^{12} r_{\text{monthly},i}\right)$$
The Standard Deviation of Returns (cont’d)

• Suppose that returns are uncorrelated over time and that each month has the same variance of returns. Then from equation (11.14) we have

\[\sigma^2 = 12 \times \sigma^2_{\text{monthly}} \]

where \(\sigma^2 \) is the annual variance

• The annual standard deviation is

\[\sigma_{\text{monthly}} = \frac{\sigma}{\sqrt{12}} \]

• If we split the year into \(n \) periods of length \(h \) (so that \(h = 1/n \)), the standard deviation over the period of length \(h \) is

\[\sigma_h = \sigma \sqrt{h} \] (11.15)
The Binomial Model

• The binomial model is

\[S_{t+h} = S_t e^{(r-\delta)h \pm \sigma \sqrt{h}} \]

• Taking logs, we obtain

\[\ln(S_{t+h} / S_t) = (r - \delta)h \pm \sigma \sqrt{h} \] \hspace{1cm} (11.16)

 – Since \(\ln(S_{t+h}/S_t) \) is the continuously compounded return from \(t \) to \(t+h \), the binomial model is simply a particular way to model the continuously compounded return

 – That return has two parts, one of which is certain, \((r-\delta)h \), and the other of which is uncertain, \(\sigma \sqrt{h} \)
The Binomial Model (cont’d)

• Equation (11.6) solves the three problems in the random walk
 – The stock price cannot become negative
 – As h gets smaller, up and down moves get smaller
 – There is a $(r - \delta)h$ term, and we can choose the probability of an up move, so we can guarantee that the expected change in the stock price is positive
Lognormality and the Binomial Model

- The binomial tree approximates a lognormal distribution, which is commonly used to model stock prices.

- The lognormal distribution is the probability distribution that arises from the assumption that continuously compounded returns on the stock are normally distributed.

- With the lognormal distribution, the stock price is positive, and the distribution is skewed to the right, that is, there is a chance of extremely high stock prices.
• The binomial model implicitly assigns probabilities to the various nodes.

\[\begin{aligned}
S_0 & \quad S_0u & \quad S_0u^2 & \quad S_0u^3 \\
S_0u & \quad S_0u^2d & \quad 3p^*_2(1-p^*) \\
S_0d & \quad S_0d^2u & \quad 3p^*(1-p^*)^2 \\
S_0d^2 & \quad S_0d^3 & \quad (1-p^*)^3 \\
\end{aligned} \]
The following graph compares the probability distribution for a 25-period binomial tree with the corresponding lognormal distribution.
Alternative Binomial Trees

• There are other ways besides equation (11.6) to construct a binomial tree that approximates a lognormal distribution

 − An acceptable tree must match the standard deviation of the continuously compounded return on the asset and must generate an appropriate distribution as $h \to 0$

 − Different methods of constructing the binomial tree will result in different u and d stock movements

 − No matter how we construct the tree, to determine the risk-neutral probability, we use
 \[
 p^* = \frac{e^{(r-\delta)h} - d}{u - d}
 \]
 and to determine the option value, we use
 \[
 C = e^{-rh} [p^* C_u + (1 - p^*) C_d]
 \]
Alternative Binomial Trees (cont’d)

• The Cox-Ross-Rubinstein binomial tree
 – The tree is constructed as
 \[
 u = e^{\sigma \sqrt{h}} \\
 d = e^{-\sigma \sqrt{h}}
 \]
 \[(11.18)\]
 – A problem with this approach is that if \(h \) is large or \(\sigma \) is small, it is possible that \(e^{rh} > e^{\sigma \sqrt{h}} \). In this case, the binomial tree violates the restriction of
 \[
 u > e^{(r-\delta)h} > d
 \]
 – In practice, \(h \) is usually small, so the above problem does not occur
Alternative Binomial Trees (cont’d)

• The lognormal tree
 – The tree is constructed as
 \[u = e^{(r-\delta-0.5\sigma^2)h + \sigma\sqrt{h}} \]
 \[d = e^{(r-\delta-0.5\sigma^2)h - \sigma\sqrt{h}} \] (11.19)

• Although the three different binomial models give different option prices for finite \(n \), as \(n \to \infty \) all three binomial trees approach the same price.
Is the Binomial Model Realistic?

• The binomial model is a form of the random walk model, adapted to modeling stock prices. The lognormal random walk model here assumes that
 – Volatility is constant
 – “Large” stock price movements do not occur
 – Returns are independent over time

• All of these assumptions appear to be violated in the data