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Inspiration

• A finite probability space is used to model the phenomena in which
there are only finitely many possible outcomes

• Let us discuss the binomial model we have studied so far through a
very simple example

• Suppose that we toss a coin 3 times; the set of all possible outcomes
can be written as

Ω = {HHH,HHT ,HTH,THH,HTT ,THT ,TTH,TTT}

• Assume that the probability of a head is p and the probability of a
tail is q = 1− p

• Assuming that the tosses are independent the probabilities of the
elements ω = ω1ω2ω3 of Ω are

P[HHH] = p3, P[HHT ] = P[HTH] = P[THH] = p2q,

P[TTT ] = q3, P[HTT ] = P[THT ] = P[TTH] = pq2
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An Example (cont’d)

• The subsets of Ω are called events, e.g.,

”The first toss is a head” = {ω ∈ Ω : ω1 = H}
= {HHH,HTH,HTT}

• The probability of an event is then

P[”The first toss is a head”] = P[HHH] + P[HTH] + P[HTT ] = p

• The final answer agrees with our intuition - which is good
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Definitions
• A finite probability space consists of a sample space Ω and a

probability measure P.
The sample space Ω is a nonempty finite set
and the probability measure P is a function which assigns to each
element ω in Ω a number in [0, 1] so that∑

ω∈Ω

P[ω] = 1.

An event is a subset of Ω.
We define the probability of an event A as

P[A] =
∑
ω∈A

P[ω]

• Note:

P[Ω] = 1

and if A ∩ B = ∅

P[A ∪ B] = P[A] + P[B]
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Random variables

• Definition. A random variable is a real-valued function defined on Ω

• Example (Stock prices) Let the sample space Ω be the one
corresponding to the three coin tosses. We define the stock prices
on days 0, 1, 2 as follows:

S0(ω1ω2ω3) = 4 for all ω1ω2ω3 ∈ Ω

S1(ω1ω2ω3) =

{
8 for ω1 = H

2 for ω1 = T

S2(ω1ω2ω3) =


16 for ω1 = ω2 = H

4 for ω1 6= ω2

1 for ω1 = ω2 = H
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Distributions

• The distribution of a random variable is a specification of the
probabilities that the random variable takes various values.

• Following up on the previous example, we have

P[S2 = 16] = P{ω ∈ Ω : S2(ω) = 16}
= P{ω = ω1ω2ω3 ∈ Ω : ω1 = ω2}
= P[HHH] + P[HHT ] = p2

• Is is customary to write the distribution of a random variable on a
finite probability space as a table of probabilities that the random
variable takes various values.
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Expectations

• Let a random variable X be defined on a finite probability space
(Ω, P). The expectation (or expected value) of X is defined as

E[X ] =
∑
ω∈Ω

X (ω)P[ω]

• The variance of X is

Var [X ] = E[(X − E[X ])2]

• Note: The expectation is linear, i.e., if X and Y are random variables
on the same probability space and c and d are constants, then

E[cX + dY ] = cE[X ] + dE[Y ]
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Back to the binomial pricing model

• The risk neutral probabilities were chosen as

p∗ =
e(r−δ)h − d

u − d
, q∗ = 1− p∗

• Thus, at any time n and for any sequences of coin tosses (i.e., paths
of the stock price) ω = ω1ω2 . . . ωn, we have that

Sn(ω) = e−rh [p∗Sn+1(ω1 . . . ωnH) + q∗Sn+1(ω1 . . . ωnT )]

• In words, the stock price at time n is the discounted weighted
average of the two possible stock prices at time n + 1, where p∗ and
q∗ are the weights used in averaging

• Define

E∗n[Sn+1](ω1 . . . ωn) = p∗Sn+1(ω1 . . . ωnH) + q∗Sn+1(ω1 . . . ωnT )

• Then, we can write

Sn = e−rh E∗n[Sn+1]

• We call E∗n[Sn+1] the conditional expectation of Sn+1 based on the
information known at time n
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The Definition

• Let 1 ≤ n ≤ N and let ω1, . . . ωn be given and temporarily fixed.
Denote by χ(ωn+1 . . . ωN) the number of heads in the continuation
ωn+1 . . . ωN and by τ(ωn+1 . . . ωN) the number of tails in the
continuation ωn+1 . . . ωN

We define

E∗n[X ](ω1 . . . ωn) =
∑

ωn+1...ωN

(p∗)χ(ωn+1...ωN )(q∗)τ(ωn+1...ωN )X (ω1 . . . ωN)

and call E∗n[X ] the conditional expectation of X based on the
information at time n
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Properties

E∗0 [X ] = E∗[X ], E∗N [X ] = X

• Linearity:

En[cX + dY ] = cEn[X ] + dEn[Y ]

• Taking out what is known: If X actually depends on the first n coin
tosses only, then

En[XY ] = XEn[Y ]

• Iterated conditioning: If 0 ≤ n ≤ m ≤ N, then

En[Em[X ]] = En[X ]

• Independence: If X depends only on tosses n + 1 through N, then

En[X ] = X
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An illustration of the independence
property

• In the same example that we have looked at so far, assume that the
actual probability that the stock price rises in any given period
equals p = 2/3 and consider

E1 [S2/S1] (H) =
2

3
· S2(HH)

S1(H)
+

1

3
· S2(HT )

S1(H)
=

2

3
· 2 +

1

3
· 1

2
=

3

2

E1 [S2/S1] (T ) =
2

3
· S2(TH)

S1(T )
+

1

3
· S2(TT )

S1(T )
= · · · = 3

2

• We conclude that E1[s2/S1] does not depend on the first coin toss -
it is not random at all
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