D: April 5th, 2019.

Collars [review].

Let Kp & Kc.

(· LONG the Kp·strike put
(· WRITE/SHORT the Kc·strike call) European;
identical

We use the long collar to hedge a long stock. The resulting portfolio is a collared stock.

An investor has a long position in a non-dividend-paying stock, and additionally, has a long collar on this stock consisting of a 40-strike put and 50-strike call.

Determine which of these graphs represents the payoff diagram for the overall position at the time of expiration of the options.

Zevo-Cost Collars.

For each pair K_P & K_C obtained as above, we end up w/a (K_P, K_C) ·collar whose cost is ZERO.

We have infinitely many zero cost collars.

Ratio Spreads. Let K1 < K2

- · LONG m calls w/ strike K1
- · SHORT/WRITE n calls w/ strike K2) otherwise identical

w/ m and n positive constants; usually integers.

Q: What If m=n?

It's like m call bull spreads.

Q: What If m>n? 2/2 10 SPRENT

Payoff

Q: Who would trade in this position?

- · Speculators on higher prices.
- · Long w.r.t. the underlying => Use it to hedge a short position.

Q: Who would invest in this ratio spread?

- · Arbitrageur X No lower bound?
- · Speculator: Low volatility & low likelihood of · Hedger X No directionality! high prices

38.

The current price of a medical company's stock is 75. The expected value of the stock price in three years is 90 per share. The stock pays no dividends.

You are also given

- i) The risk-free interest rate is positive.
- ii) There are no transaction costs.
- iii) Investors require compensation for risk.

The price of a three-year forward on a share of this stock is X, and at this price an investor is willing to enter into the forward.

Determine what can be concluded about *X*.

(A)
$$X < 75$$

(B)
$$X = 75$$

(C)
$$75 < X < 90$$

(D)
$$X = 90$$

39.

Determine which of the following strategies creates a ratio spread, assuming all options are European.

- X (A) Buy a one-year call, and sell a three-year call with the same strike price.
- X (B) Buy a one-year call, and sell a three-year call with a different strike price.
- (C) Buya one-year call, and buy three one-year calls with a different strike price.
- Buy a one-year call, and sell three one-year puts with a different strike price.
 - (E) Buy a one-year call, and sell three one-year calls with a different strike price.

long call + long bond

11

long put + long stock

Box Spreads

... replicate a bond

Puticall Parity:

· long a K·strike call LONG
· short a K·strike put Synthetic forward
w/ strike K

· short an L·strike call SHORT
· long an L·strike put Synthetic forward
w/ strike L

Box Spread: (** LONG (K,L)·call bull spread

LONG (K,L)·put bear spread

53.

For each ton of a certain type of rice commodity, the four-year forward price is 300. A four-year 400-strike European call option costs 110.

The continuously compounded risk-free interest rate is 6.5%.

Calculate the cost of a four-year 400-strike European put option for this rice commodity.

- (A) 10.00
- (B) 32.89
- (C) 118.42
- (D) 187.11
- (E) 210.00

54.

DELETED

55.

Box spreads are used to guarantee a fixed cash flow in the future. Thus, they are purely a means of borrowing or lending money, and have no stock price risk.

Consider a box spread based on two distinct strike prices (K, L) that is used to lend money, so that there is a positive cost to this transaction up front, but a guaranteed positive payoff at expiration.

Determine which of the following sets of transactions is equivalent to this type of box spread.

- (A) A long position in a (K, L) bull spread using calls and a long position in a (K, L) bear spread using puts.
- (B) A long position in a (K, L) bull spread using calls and a short position in a (K, L) bear spread using puts.
- (C) A long position in a (K, L) bull spread using calls and a long position in a (K, L) bull spread using puts.
- (D) A short position in a (K, L) bull spread using calls and a short position in a (K, L) bear spread using puts.
- (E) A short position in a (K, L) bull spread using calls and a short position in a(K, L) bull spread using puts.

Spreads etc.

call bull spreads ? >0

put bull -11- ? <0

call bear -11- & <0

put bear -1- & >0

arbitrage p.
monat.

cord slope

cord slope

moust.

conversity

butterfly spreads + speculation on low vol.

straddles + strangles speculation on high vol

- . collars
- . ratio spreads
 - · box spreads