Warm-up Worksheet #1
More on basic hedging: forward contracts

In preparation for the next class, please solve the following problems:

1.1. Payoff and profit curves for a producer of goods who hedges using a forward contract.

Problem 1.1. (2 points) Farmer Brown plans to harvest 10,000 bushels of corn. His aggregate fixed and variable costs are projected to amount to $2.47 per bushel.

At harvest time, the price of corn is observed to be $3.40 per bushel. What is farmer Brown’s total profit?

\[
\text{Total Profit} = \text{Number of Units} \times (\text{Price of Good} - \text{Cost of Production})
\]

\[
10,000 \times (3.40 - 2.47) = 10,000 \times 0.93 = 9,300.
\]

Problem 1.2. Farmer Black plans to harvest 5,000 bushels of corn. His aggregate fixed and variable costs amount to $2.75 per bushel.

(1 point) Farmer Black fears that the price of corn is going to drop, so he decides to hedge using a forward contract. Is farmer Black going to take a long or a short position in the forward contract?

\[
\text{Inherent position} : \text{Long w/ respect to "corn"} \Rightarrow \text{Hedge} = \text{SHORT FORWARD CONTRACT, i.e., he is selling forward}
\]

A forward contract on corn with delivery date at harvest time and forward price of $2.80 is available.

(2 points) At harvest time, the price of corn is observed to be $2.40 per bushel. What is the total profit of farmer Black’s hedged position?

\[
\text{Profit} = \text{Number of Units} \times (\text{Forward Price} - \text{Cost of Production})
\]

\[
5,000 \times (2.80 - 2.75) = 5000 \times 0.05 = 250 \text{ gain}
\]
(2 points) What would farmer Black's profit have been had he not decided to hedge using the forward contract?

\[\text{# of units} \times (S(T) - C) = 5,000 \times (2.40 - 2.75) = -1,750 \]

\[\Rightarrow 1,750 \text{ loss} \]

Problem 1.3. (2 points) Draw the payoff and profit curve (per unit) for a producer of goods who hedges using a forward contract.
Problem 1.4. (5 points) Consider the general case in which

- \(C \) stands for the total aggregate fixed and variable costs of production per unit of good;
- \(F \) stands for the forward price per unit of good.

What is the price \(s^* \) per unit of good at which the profit of a producer who hedges using a forward contract equals the profit of the producer who does not hedge at all?

\[
\begin{align*}
\text{hedged position profit} & : F - C \\
\text{unhedged profit} & : s - C
\end{align*}
\]

\[
\Rightarrow \text{Solve for } s \text{ in } F - C = s - C
\]

\[
\Rightarrow s^* = F
\]

1.2. Payoff and profit curves for a user/buyer of goods who hedges using a forward contract.

Problem 1.5. Pancakes, Inc. produces a variety of pancake products. It longed a forward contract on 100 lbs of blueberries at $2.00 per pound. Revenue is $1,000 for the pancakes produced with the above blueberries. Other costs total $700. Find the profit.

Course Website: Link to a story on "coffee prices".
$1,000 - $700 - 100 \times \$2 = \\
= \$100.

THE GENERAL PRINCIPLE

Unhedged Position + Hedge = Hedged position

Here:

\[R - C - S(T) + (SCT - F) = R - C - F \]

PROFIT

Diagram:
- Long forward (the hedge)
- The hedged position
- Unhedged
European call Option

NO ACTIVITY BETWEEN 0 AND T

0 \quad T \quad \text{EXERCISE DATE (also expiration or maturity date)}

• the call option is agreed upon

• the logistics:
 • the underlying asset
 • strike price K
 • cash/physical settlement

\rightarrow • The call price is paid!

At time-T: The owner of the call (i.e., the long position) has the RIGHT but NOT an obligation to buy 1 unit of an asset (i.e., the underlying) for a (predetermined) price K. The strike/exercise price K

If the purchase happens, we say that the option was EXERCISED.

Assume, all agents (e.g., the owner of the call) are behaving rationally (in the sense of profit maximization).

Q: What is the optimal behavior at time-T?

• Observe $S(T)$... the market price of underlying

• IF $S(T) \geq K$ \quad \Rightarrow \quad \text{EXERCISE} : \text{get } S(T) \text{ and give up } K

• IF $S(T) < K$ \quad \Rightarrow \quad \text{nothing} : 0
The payoff of a long call is:

\[V_c(T) = \begin{cases}
S(T) - K, & \text{if } S(T) \geq K \\
0, & \text{if } S(T) < K
\end{cases} \]

Indicator random variables

\[I_A(\omega) = \begin{cases}
1 & \text{if } \omega \in A \\
0 & \text{if } \omega \notin A
\end{cases} \]

\(A \subseteq \Omega \) an event

\[V_c(T) = (S(T) - K)I_{[S(T) \geq K]} \]

Maximum operation: \(\max(a, b) = a \vee b \)

\[\max(a, b) = \begin{cases}
a, & \text{if } a \geq b \\
b, & \text{if } b > a
\end{cases} \]

\[V_c(T) = \max(S(T) - K, 0) = (S(T) - K) \vee 0 \]

The positive-part function:

\[x \mapsto (x)_+ := \max(x, 0) \]

\[V_c(T) = (S(T) - K)_+ \]

\[\Rightarrow \text{The payoff function of the long call is:} \]

\[V_c(s) = (s - K)_+ \]
Long-call payoff: \rightarrow LONG

w/ respect to the underlying \rightarrow not bounded from above i.e., it has the "unlimited growth potential \rightarrow NONNEGATIVE".

"writer" of the option is BOUND by the option-owner's choice. Aka: SELLER, one w/ SHORT option.

NOTE: The payoff is NON-POSITIVE?

Q: Why write a call option in first place?

\rightarrow There needs to be an initial PREMIUM to be paid to the writer.

$V_c(0)$... the initial value/price/premium/worth of our call option

\Rightarrow PROFIT (Long Call) = PAYOFF (Long Call) - $FV_{0,T}(V_c(0))$

$= (S(T) - K)_+ - FV_{0,T}(V_c(0))$

Profit

Long-call profit

the break-even point: $K + FV_{0,T}(V_c(0))$
Q: Could a [producer/seller] of goods hedge using a [call option]?

Inherent [LONG] position.

They [SHORT/ WRITE] the call.

- [PROFIT]
 - [FV (V_{col})]
 - [-C + FV (V_{col})]
 - [-C]

- [unhedged profit]
- [hedged profit]
- [short-call profit]
- [hedge (a short call) payoff]

"A portion of the potential profit is sold by writing your call."

Also, means of financing.
Problem 3.3. The market price of the good is the independent argument \(s \). Assume that its producer is hedging using a European call. Draw the profit curve of the hedged portfolio.

Problem 3.4. Sweet potato call options with the exercise date in six months (at harvest time) and a $15.00 strike price (per carton) are trading for a $1.50 premium. Farmer Brown decides to hedge his 10,000 cartons of sweet potatoes by writing 10,000 of the above call options. The total fixed costs of producing his entire sweet-potato crop is $120,000. Assume the continuously compounded risk-free interest rate equal to 0.04. What is farmer Brown’s profit if the market price of sweet potatoes turns out to be $14.50 per carton at harvest time?

\[
\frac{S(T) - C - (S(T) - K)_+}{\text{unhedged profit}} + FV_{0,T} (V_C(0)) = \left \lfloor \begin{array}{c}
\text{short-call payoff} \\
\text{no exercise}
\end{array} \right \rfloor
\]

\[
\Rightarrow \text{Total Profit} = 10,000 \left(14.50 + 1.50 \frac{K}{T} \right) - 120,000 =
\]

3.2. Buyer hedging with a European call.

Problem 3.5. Recall that a buyer of commodity has an inherent short position in that asset. If (s)he decides to use European calls to hedge, should (s)he buy or write the call option?