A European call gives its owner the right but not the obligation to buy the underlying asset for the (predetermined) strike price \(K \) on the exercise date \(T \).

Payoff (long call): \(V_c(T) = (S(T) - K)_+ \)

Payoff function: \(v_c(s) = (s - K)_+ \)

Long Call: This is a long position w/ respect to the underlying.
3.1. **Producer hedging with a European call.**

Problem 3.1. Recall that a producer of goods has an inherent **long position in that asset.** If (s)he decides to use European calls to hedge, should (s)he buy or write the call option?

\[\downarrow \]

Short/Write the call option

Problem 3.2. The market price of the good is the independent argument \(s \). Assume that its producer is hedging using a European call. Draw the payoff curve of the hedged portfolio.

\[\downarrow \]

At home.
Problem 3.3. PROFIT curve for a producer who hedges w/ a written call

\[\text{FV}(V_c(0)) \]
\[-C + \text{FV}(V_c) \]
\[-C \]

unhedged position
hedged position
hedge (short call)

Problem 3.4.

six-month, 15-strike calls w/ \(V_c(0) = 1.50 \)
\(C = 12 \)
\(r = 0.04 \)
\(S(T) = 14.50 \)

without hedging: \(10,000(S(T) - C) \)

\(Q: \) Does the farmer buy or write the calls?

hedged position:

\[10,000 \left(S(T) - C - (S(T) - K)_+ + \text{FV}(V_c(0)) \right) = ? \]

Option is not exercised @ \(14.50 = S(T) \)

answer = \(10,000 \left(14.50 - 12 + 1.50e^{0.04 \cdot 0.5} \right) = 40,303 \)
Problem 3.6. Suppose that the buyer is hedging using a European call. Draw the profit curve of the hedged portfolio.

Problem 3.7. The “Babkas, Brownies and Beyond” bakery sells blueberry muffins for $3.00 per muffin. The bakery will need to buy 100 lbs of blueberries in six months to produce the 1600 muffins needed for the “Greater Springfield Blueberry Jamboree”. Non-blueberry costs total $2,500. Assume that the continuously compounded risk-free interest rate equals 0.04. Local farmers are financially sophisticated. Our bakery uses one hundred $1.60 strike, six-month call options (each on a pound of blueberries) to hedge against rising prices of blueberries. The calls can be bought for $0.15 per call. Assume that the market price of a pound of blueberries is $1.65 in six months. What is the profit of the bakery’s hedged portfolio?

Method I: "Flat" portion of the above profit curve.

\[R - C - FV(V_c(0)) - K = \]

\[= 3 \cdot 1,600 - 2,500 - 100 \cdot 0.15 \cdot e^{0.04 \cdot 0.5} - 100 \cdot 1.60 \]

\[= 2,124.70 \]

Method II: "Financial Interpretation"

\[
\text{unhedged: } R - C - S(T) \\
\text{hedge = Long Call: } (S(T) - K)^+ - FV_{0,T}(V_c(0))
\]

Profit (hedged position):

\[R - C - \min(S(T), K) - FV_{0,T}(V_c(0)) = \]

INSTRUCTOR: Milica Čudina
In general: \(-a + (a-b)_+ = \begin{cases} -a + (a-b) & a \geq b \\ -a + 0 & b > a \end{cases} = -\min(a,b)\)
3.2.1. The short seller's perspective.

Problem 3.8. Look at the following situation:
- the initial stock price is \(S(0) = 100 \); the short seller receives the proceeds of the short sale at time \(-0\);
- the continuously compounded risk-free interest rate equals 0.04;
- the short sale is closed at time \(T = 1 \);
- a 100–strike, one-year European call on the stock is sold for $5 at time \(-0\).

What are the short seller's payoff and profit curves?

Initially: The short-seller gets \(S(0) = 100 \), to buy the call spend \(V_c(0) = 5 \)

Inflow of \(95 \) accumulates to \(95e^{0.04} \)
University of Texas at Austin

Quiz #6

European call options.

Please, provide the complete solution to the following problem(s):

Problem 6.1. The premium on a 1000-strike, 2-month European call option on the market index is $20. After 2 months the market index spot price is 1075. If the risk-free interest rate equals 0.5% effective per month, what is the long-call profit?

Problem 6.2. The fair price today of a zero-coupon bond with redemption amount of $100 and which comes to maturity in a year is equal to $78.

You purchase an at-the-money European call option on a non-dividend paying stock whose price today is $S(0) = $100. The premium of this call was $10.

Write the expression for this call’s payoff, and for its profit (valued at its expiration date T) as a function of $S(T)$ (the stock price at time T) and the time of maturity T. Draw the graph of this call’s profit as a function of $S(T)$.

Problem 6.3. An investor purchases a call option with an exercise price of $55 for $2.60. The same investor sells a call on the same asset with an exercise price of $60 for $1.40. At expiration, 3 months later, the asset price is $56.75. All other things being equal and given a continuously compounded annual interest rate of 4.0%, what is the profit to the investor?

Problem 6.4. In a certain market, you are given that

- the price of a 40–strike European call option on an underlying asset S with maturity T is $11;
- the price of a 50–strike European call option on an underlying asset S with maturity T is $6;
- the price of a 55–strike European call option on an underlying asset S with maturity T is $3.$

Let the risk-free interest rate be $r = 0.05.$

A trader decides to construct the following portfolio:

1. long one 40–strike call option;
2. short three 50–strike European call options;
3. long two 55–strike calls.

Suppose that at time $T = 1$ the value of the asset S is $S(1) = 52.$ What is the profit of the portfolio at time T?

Problem 6.5. For what values of the final asset price is the profit of a long forward contract with the forward price $F = 100$ and delivery date T in one year smaller than the profit of a long call on the same underlying asset with the strike price $K = 100$ and the exercise date T. Assume that the call’s premium equals 10 and that the annual effective interest rate equals 10%.

Express your answer as an interval.

Instructor: Milica Ćudina
Profit (Long Call) = Payoff (Long Call) - FV_{0,T}(V_c(0))
= (S(T) - K)^+ - V_c(0) \cdot (1 + 0.005)^2

Answer: \((1075 - 1000)^+ - 20 (1.005)^2 = 54.80\)

\[\text{at-the-money} \Rightarrow \text{strike price} = \text{initial stock price} \quad K = S(0) = 100\]

\[V_c(0) = 10\]

Payoff: \[V_c(T) = (S(T) - 100)^+\]
Profit: \[(S(T) - 100)^+ - FV_{0,T}(10) = (S(T) - 100)^+ - \left(\frac{100}{78}\right)^T \cdot 10\]
Payoff:
\[(S(T) - 55) + - (S(T) - 60)\]

Profit:
\[(S(T) - 55) + - 1.20 e^{0.01} q = 1.75 - 1.20 e^{0.01}\]

Long K-strike call
Short K-strike call

Payoff curve
Long w/ respect to the underlying.