Prepaid Swaps

Note: Compare them to old-fashioned magazine subscriptions.

\[\text{pmt \ atm} = ? \]

\[x^p \ldots \text{prepaid - swap price} \]

PREPAID SWAP \(\iff \) \{ A portfolio consisting of two prepaid forward contracts w/ delivery dates \(T_1 \) and \(T_2 \).

An example of a REPLICATING PORTFOLIO.

\[\implies x^p = F_{0,T_1}^p + F_{0,T_2}^p \]

NO ARBITRAGE \(\uparrow \)

\[x^p = \frac{F_{0,T_1}}{(1+r_0(T_1))^T_1} + \frac{F_{0,T_2}}{(1+r_0(T_2))^T_2} \]

Example. Need for oil delivery @ \(T_1 = 1 \) and \(T_2 = 2 \).

Forward prices for oil delivery are \(F_{0,1} = \$20 \) and \(F_{0,2} = \$21 \) per barrel.

The spot rates for \(1 \text{ yr} \) and \(2 \text{ yrs} \) to maturity are 0.06 and 0.065, resp.

Find the prepaid - swap price.
Commodity swaps [cont'd]

\[x^P = \frac{F_{0,T_1}}{(1 + r_0(o,T_1))^T_1} + \frac{F_{0,T_2}}{(1 + r_0(o,T_2))^T_2} \]

... Level swap price

No arbitrage \(\Rightarrow \) \(x^P = PV_{0,T_1}(x) + PV_{0,T_2}(x) \)

\(\Rightarrow \) \(x^P = \frac{x}{(1 + r_0(0,T_1))^T_1} + \frac{x}{(1 + r_0(0,T_2))^T_2} \)

\(\Rightarrow \) \(x = \frac{x^P}{(1 + r_0(0,T_1))^{-T_1} + (1 + r_0(0,T_2))^{-T_2}} \)

Example [oil, cont'd] Level swap price = ?

\(x = 37.383 \left((1.06)^{-1} + (1.065)^{-2} \right)^{-1} = \ldots = 20.483 \).

Note:

\(F_{0,1} = 20 < x = 20.483 < F_{0,2} = 21 \)

We always (i.e., in the normal cases):

\(F_{0,1} \leq x \leq F_{0,2} \)
Example [cont'd]

\[F_{0,1} = 20 \quad F_{0,2} = 21 \]
\[r_0(0,1) = 0.06 \quad r_0(0,2) = 0.065 \]

\[\Rightarrow [x = 20.483] \]

level swap:

pair of forwards:

\[\begin{align*}
& x & x \\
& V & \wedge \\
& F_{0,1} & F_{0,2}
\end{align*} \]

It appears that we "overpay" at time-1 and we "underpay" at time-2

\[\Rightarrow \text{Interpretation:} \]

This acts as a "loan" from the buyer to the seller:

- issued @ time-1 \{ the correct
- repaid @ time-2 \} rate to be charged

is the IMPLIED FORWARD RATE for \([1,2]\).

\[r_0(T_1,T_2) \]

In our example:

\[(1+r_0(0,1)) (1+r_0(1,2)) = (1+r_0(0,2))^2 \]

\[r_0(1,2) = \left(\frac{1.065}{1.06} \right)^2 - 1 = 0.07 \]

Check if the interpretation works:

\[(x - F_{0,1}) (1 + r_0(1,2)) = F_{0,2} - x \]
The Market Value of a Swap

- The market value of a swap is initially zero
- Once the swap is struck, its market value will generally no longer be zero because
 - the forward prices for oil and interest rates will change over time
 - even if prices do not change, the market value of swaps will change over time due to the implicit borrowing and lending
- A buyer wishing to exit the swap could enter into an offsetting swap with the original counterparty or whomever offers the best price
- The market value of the swap is the difference in the PV of payments between the original and new swap rates
Let \(P_1 \) and \(P_2 \) represent the one-year and two-year forward prices per ton of rice, respectively.

Let \(r_1 \) and \(r_2 \) represent the one-year and two-year spot rates, respectively.

A rice buyer and a rice supplier agree that the supplier will deliver one ton of rice at the end of each of the next two years, and the buyer will pay a constant swap price of \(P \) per ton.

Determine an expression for \(P \).

(A) \(\frac{P_1 + P_2}{2} \)

(B) \(\frac{r_1 P_1 + r_2 P_2}{r_1 + r_2} \)

(C) \(\frac{(P_1 + P_2)(1 + r_1)(1 + r_2)^2}{1 + r_1 + (1 + r_2)^2} \)

(D) \(\frac{P_1(1 + r_2)^2 + P_2(1 + r_1)}{1 + r_1 + (1 + r_2)^2} \)

(E) \(\frac{P_1(1 + r_1) + P_2(1 + r_2)^2}{1 + r_1 + (1 + r_2)^2} \)

\[
\frac{P_1}{1 + r_1} + \frac{P_2}{(1 + r_2)^2} = \frac{P}{1 + r_1} + \frac{P}{(1 + r_2)^2} \]

\[
P = \frac{P_1 (1 + r_2)^2 + P_2 (1 + r_1)}{1 + r_1 + (1 + r_2)^2} \]

\[
P \left((1 + r_1) + (1 + r_2)^2 \right) = P
\]

\[
P = \frac{P_1 (1 + r_2)^2 + P_2 (1 + r_1)}{1 + r_1 + (1 + r_2)^2}
\]

\[
\Rightarrow \boxed{\text{D}}
\]
Futures.

A good source: HULL: "Options, futures and other derivative securities" [p. 18 onwards]

- Credit risk: A MARGIN ACCOUNT
- Marking-to-market

Standardization

\Rightarrow Futures are liquid

\Rightarrow Confident in the observed prices.

\Rightarrow Futures are suitable as underlying assets for other option.
Margin accts and marking-to-market

NOTIONAL VALUE... the initial worth of the entire investment

MARGIN ACCT... earns interest

\[L \text{ in Full Generality this could be a non-deterministic, time-varying interest rates, i.e. @ FLOATING RATE} \]

\[L \text{ IN OUR PROBLEMS:} \]

\[\text{a single, risk-free, deterministic} \]

INITIAL MARGIN: \[B^b(0) = B^s(0) = q \cdot N \]

\[\uparrow \text{the notional value} \]

\[\uparrow \text{the required percentage} \]

Settlement times

\[0 \quad t_1 \quad \ldots \quad t_k \quad \ldots \quad T = t_n \]

\[B^s(t_{k+1}) \]

\[t_{k-1} \quad t_k \]

Just prior to marking to market @ time-\(t_k \):

\[B^s(t_k^-) = B^s(t_{k-1}) \cdot e^{r(t_k - t_{k-1})} \]

\[B^s(t_k) = B^s(t_k^-) \cdot n \times \text{Size} \times \left(F_{t_k,T} - F_{t_{k-1},T} \right) \]

\[\text{marking to market } \text{MM} \]

the maintenance margin (the "broker's comfort boundary")
\[B^s(t^+_k) = B^s(t_k) \] MM

The possible margin call.