Name:

> M339D $=$ M389D Introduction to Actuarial Financial Mathematics
> University of Texas at Austin
> Solution: The Prerequisite In-Term Exam

Instructor: Milica Čudina
Notes: This is a closed book and closed notes exam. The maximal score on this exam is 90 points. Time: 50 minutes

MULTIPLE CHOICE

			0.11 (5)	a	b	c	d	e
			0.12 (5)	a	b	c	d	e
TRUE/	LSE		0.13 (5)	a	b	c	d	e
0.1 (2)	TRUE	FALSE	0.14 (5)	a	b	c	d	e
0.2 (2)	TRUE	FALSE						
0.3 (2)	TRUE	FALSE	0.15 (5)	a	b	c	d	e
0.4 (2)	TRUE	FALSE	0.16 (5)	a	b	c	d	e
0.5 (2)	TRUE	FALSE		a	b	c	d	e
				a	b	c	d	e
			0.19 (5)	a	b	c	d	e
			0.20 (5)	a	b	c	d	e

FOR THE GRADER'S USE ONLY:

T/F	F.R.	M.C.	$\boldsymbol{\Sigma}$	

0.1. TRUE/FALSE QUESTIONS. Please, circle the correct answer on the front page of this exam.

Problem 0.1. (2 points)
We define the minimum of two values in the usual way, i.e.,

$$
\min (x, y)= \begin{cases}x & \text { if } x \leq y \\ y & \text { if } x \geq y\end{cases}
$$

We define the maximum of two values in the usual way, i.e.,

$$
\max (x, y)= \begin{cases}x & \text { if } x \geq y \\ y & \text { if } x \leq y\end{cases}
$$

Then, for every x and y we have that

$$
x-\min (x-y, 0)=\max (x, y)
$$

True or false?
Solution: TRUE

$$
\begin{aligned}
x-\min (x-y, 0) & = \begin{cases}x-0=x, & \text { if } x \geq y \\
x-(x-y)=y, & \text { if } x<y\end{cases} \\
& =\max (x, y)
\end{aligned}
$$

Problem 0.2. (2 points) Let $x>0$. Then, we always have $e^{x}>1+x$. True or false?

Solution: TRUE

Problem 0.3. (2 points) Denote the continuously compounded, risk-free interest rate by r and denote the equivalent annual effective interest rate by i. Then, $\ln (1+i)=r$. True or false?

Solution: TRUE

Problem 0.4. (2 pts) Two dice are rolled, the single most probable sum of the numbers of the upturned faces is 7 . True or false?

Solution: TRUE

Problem 0.5. (2 pts)
We define the maximum of two values in the usual way, i.e.,

$$
\max (x, y)= \begin{cases}x & \text { if } x \geq y \\ y & \text { if } x \leq y\end{cases}
$$

Then, for every x and y we have that

$$
\max (x, y)=\max (x-y, 0)+y
$$

True or false?

Solution: TRUE

0.2. FREE-RESPONSE PROBLEMS.

Problem 0.6. (5 points) Draw the graph of the following function in the coordinate system provided below:

$$
f(x)= \begin{cases}300 & \text { for } 0<x<200 \\ 500-x & \text { for } 200 \leq x<500 \\ 0 & \text { for } x \geq 500\end{cases}
$$

Solution:

Problem 0.7. (6 points) Draw the graph of the following function in the coordinate system provided below:

$$
f(x)= \begin{cases}|x-300| & \text { for } x<500 \\ 700-x & \text { for } x \geq 500\end{cases}
$$

Solution:

Problem 0.8. (6 points) Draw the graph of the following function in the coordinate system provided below:

$$
f(x)= \begin{cases}|x-400| & \text { for } x<500 \\ 2 x-400 & \text { for } x \geq 500\end{cases}
$$

Solution:

Problem 0.9. (6 points) Let the function f be given by

$$
f(x)= \begin{cases}x-300 & \text { for } x \geq 300 \\ 0 & \text { otherwise }\end{cases}
$$

Draw the graph of the function g defined as

$$
g(x)=f(x)-50
$$

in the coordinate system provided.

Solution:

Problem 0.10. (8 points) Let the function f be defined as

$$
f(x)=x
$$

Let the function g be defined as

$$
g(x)= \begin{cases}0 & \text { for } x<500 \\ x-500 & \text { for } x \geq 500\end{cases}
$$

Draw the graph of the function $f-g$ in the coordinate system provided below:

Solution:

0.3. MULTIPLE CHOICE QUESTIONS.

> Please, circle the correct answer on the front page of this exam.

Problem 0.11. (5 pts) A coin for which Heads is twice as likely as Tails is tossed twice, independently. If the outcomes are two consecutive Heads, Bertie gets a $\$ 15$ reward; if the outcomes are different, Bertie gets a $\$ 10$ reward; if the outcomes are two consecutive Tails, Bertie has to pay $\$ 5$. What is the expected value of Bertie's winnings?
(a) $75 / 9$
(b) $80 / 9$
(c) $85 / 9$
(d) $95 / 9$
(e) None of the above.

Solution: (d)

Since Heads is twice as likely as Tails, Heads appears with probability 2/3, while Tails appears with probability $1 / 3$.

Let X denote the amount Bertie wins. Then, X has the following distribution:

$$
\begin{aligned}
& X \sim \begin{cases}15, & \text { with probability } 4 / 9, \\
10, & \text { with probability } 4 / 9, \\
-5, & \text { with probability } 1 / 9 .\end{cases} \\
& \mathbb{E}[X]=\frac{4}{9}(15)+\frac{4}{9}(10)+\frac{1}{9}(-5)=\frac{95}{9} .
\end{aligned}
$$

Problem 0.12. (5 pts) Which of the following formulas hold for the exponential function:
(a) $\frac{1}{1+e^{x}}=\frac{1-e^{-x}}{e^{x}-e^{-x}}$
(b) $\left(e^{x}\right)^{y}=e^{x y}$
(c) $e^{x+y}=e^{x} e^{y}$
(d) All of the above.
(e) None of the above.

Solution: The correct answer is (d).
Problem 0.13. (5 pts) Find the probability of obtaining exactly two fives in three rolls of a fair die, given that there is exactly one five in the first two rolls.
(a) $5 /(2 \cdot 3)$
(b) $5 /\left(2^{2} \cdot 3\right)$
(c) $5 / 6^{2}$
(d) $1 / 6$
(e) None of the above

Solution: (d)

Problem 0.14. (5 pts) Let Y be a random variable such that $\mathbb{P}[Y=2]=1 / 2, \mathbb{P}[Y=3]=1 / 3$ and $\mathbb{P}[Y=6]=1 / 6$. Then $\mathbb{E}[\min (Y, 5)]=\ldots$
(a) 2
(b) $17 / 6$
(c) 3
(d) $19 / 6$
(e) None of the above.

Solution: The correct answer is (b).

$$
\mathbb{E}[\min (Y, 5)]=\frac{1}{2}(2)+\frac{1}{3}(3)+\frac{1}{6}(5)=\frac{17}{6} .
$$

Problem 0.15. (5 pts) A 5 -year loan for 10,000 is charged an effective interest rate of 6% per half-year period.
The loan is to be repaid so that interest is repaid at the end of every 6 month period as it accrues and the principal is repaid in total at the end of the 5 years.

Denote the total amount of interest paid on this loan by I. Then,
(a) $I \approx 2,750$
(b) $I \approx 3,000$
(c) $I \approx 3,250$
(d) $I \approx 3,500$
(e) None of the above

Solution: (e)

$$
10 \cdot(0.06) \cdot 10,000=6,000 .
$$

Problem 0.16. (5 pts) Let $\Omega=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ be an outcome space, and let \mathbb{P} be a probability distribution on Ω. Assume that $\mathbb{P}\left[\left\{a_{1}, a_{2}\right\}\right]=1 / 3, \mathbb{P}\left[\left\{a_{2}, a_{3}\right\}\right]=1 / 4$ and $\mathbb{P}\left[\left\{a_{1}, a_{3}\right\}\right]=1 / 9$. Then we have that $\mathbb{P}\left[\left\{a_{4}\right\}\right]$ equals the following value:
(a) $1 / 4$
(b) $11 / 18$
(c) $7 / 36$
(d) $47 / 72$
(e) None of the above

Solution: (d)

For any outcome space Ω, from the axioms of probability, we must have that $\mathbb{P}[\Omega]=1$. In this case, $\Omega=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, and so

$$
\mathbb{P}[\Omega]=\mathbb{P}\left[\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}\right]=\mathbb{P}\left[\left\{a_{1}, a_{2}, a_{3}\right\}\right]+\mathbb{P}\left[\left\{a_{4}\right\}\right]=\frac{1}{2}\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{9}\right)+\mathbb{P}\left[\left\{a_{4}\right\}\right] .
$$

Hence,

$$
\mathbb{P}\left[\left\{a_{4}\right\}\right]=1-\frac{25}{72}=\frac{47}{72} .
$$

Problem 0.17. (5 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be two functions given by

$$
f(x)=2 x-10
$$

and

$$
g(x)= \begin{cases}\min (x, 7) & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Then, $g(f(7))$ equals ...
(a) -4
(b) 0
(c) 4
(d) 7
(e) None of the above

Solution: (c)

Problem 0.18. (5 pts) Tuppy deposits $\$ 100$ into an account at time 0.
For the following three years and three months, he does not make any subsequent withdrawals or deposits and the account earns at a constant continuously compounded, risk-free interest rate r.

In the end, the balance in his account equals $\$ 114$. Then,
(a) $0 \leq r<0.0150$
(b) $0.0150 \leq r<0.0250$
(c) $0.0250 \leq r<0.0550$
(d) $0.0550 \leq r<0.0650$
(e) None of the above

Solution: (c)

The unknown continuously compounded, risk-free interest rate r must satisfy

$$
114=100 e^{3.25 r} .
$$

So,

$$
r=\ln (1.14) / 3.25 \approx 0.0403
$$

Problem 0.19. (5 points) Let the accumulation function be given by

$$
a(t)=(1+0.05)^{t^{2}}
$$

Then, we can say the following about the continuously compounded, risk-free interest rate r associated with the above accumulation function:
(a) $r=0.05$
(b) $r=2 \ln (1.05)$
(c) $r=0.10$
(d) The continuously compounded, risk-free interest rate is not constant.
(e) None of the above

Solution: (d)

$$
r=\frac{d}{d t} \ln (a(t))=\frac{d}{d t} \ln \left[1.05^{t^{2}}\right]=2 t \ln (1.05) .
$$

Problem 0.20. (5 points) Consider the following graph of a function $f:[0, \infty) \rightarrow \mathbb{R}$.

Then, we can say that the function f is \ldots
(a) increasing.
(b) decreasing.
(c) both increasing and decreasing.
(d) neither increasing nor decreasing.
(e) None of the above

Solution: (d)

