Name:

M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin Solution: The Prerequisite In-Term Exam Instructor: Milica Čudina

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 90 points. **Time**: 50 minutes

				0.11 (5)	a	b	с	d	e	
				0.12(5)	a	b	с	d	е	
TRUE/FALSE				0.13(5)	a	b	с	d	е	
	0.1(2)	TRUE	FALSE	0.14(5)	a	b	с	d	е	
	0.2(2)	TRUE	FALSE							
	0.3(2)	TRUE	FALSE	0.15(5)	a	b	с	d	e	
				0.16(5)	a	b	с	d	e	
	0.4(2)	TRUE	FALSE	0.17(5)	a	b	с	d	е	
	0.5(2)	TRUE	FALSE	0.17 (0)	а	D	C	u	С	
				0.18(5)	a	b	с	d	е	
				0.19(5)	a	b	с	d	e	
				0.20 (5)	a	b	с	d	e	

MULTIPLE CHOICE

FOR THE GRADER'S USE ONLY:

$$T/F$$
 F.R. M.C. Σ

0.1. TRUE/FALSE QUESTIONS. Please, circle the correct answer on the front page of this exam.

Problem 0.1. (2 points)

We define the minimum of two values in the usual way, i.e.,

$$\min(x, y) = \begin{cases} x & \text{if } x \leq y \\ y & \text{if } x \geq y \end{cases}$$

We define the maximum of two values in the usual way, i.e.,

$$\max(x, y) = \begin{cases} x & \text{if } x \ge y \\ y & \text{if } x \le y \end{cases}$$

Then, for every x and y we have that

$$x - \min(x - y, 0) = \max(x, y)$$

True or false?

Solution: TRUE

$$x - \min(x - y, 0) = \begin{cases} x - 0 = x, & \text{if } x \ge y \\ x - (x - y) = y, & \text{if } x < y \end{cases}$$
$$= \max(x, y)$$

Problem 0.2. (2 points) Let x > 0. Then, we always have $e^x > 1 + x$. True or false? Solution: **TRUE**

Problem 0.3. (2 points) Denote the continuously compounded, risk-free interest rate by r and denote the equivalent annual effective interest rate by i. Then, $\ln(1+i) = r$. True or false?

Solution: TRUE

Problem 0.4. (2 pts) Two dice are rolled, the single most probable sum of the numbers of the upturned faces is 7. *True or false?*

Solution: TRUE

Problem 0.5. (2 pts)

We define the maximum of two values in the usual way, i.e.,

$$\max(x, y) = \begin{cases} x & \text{if } x \ge y \\ y & \text{if } x \le y \end{cases}$$

Then, for every x and y we have that

$$\max(x, y) = \max(x - y, 0) + y$$

True or false?

Solution: TRUE

0.2. FREE-RESPONSE PROBLEMS.

Problem 0.6. (5 points) Draw the graph of the following function in the coordinate system provided below:

4

Problem 0.7. (6 points) Draw the graph of the following function in the coordinate system provided below:

Problem 0.8. (6 points) Draw the graph of the following function in the coordinate system provided below:

6

Problem 0.9. (6 points) Let the function f be given by

$$f(x) = \begin{cases} x - 300 & \text{for } x \ge 300\\ 0 & \text{otherwise} \end{cases}$$

Draw the graph of the function g defined as

$$g(x) = f(x) - 50$$

in the coordinate system provided.

Problem 0.10. (8 points) Let the function f be defined as

$$f(x) = x$$

Let the function g be defined as

$$g(x) = \begin{cases} 0 & \text{for } x < 500\\ x - 500 & \text{for } x \ge 500 \end{cases}$$

Draw the graph of the function f - g in the coordinate system provided below:

8

0.3. MULTIPLE CHOICE QUESTIONS.

Please, circle the correct answer on the front page of this exam.

Problem 0.11. (5 pts) A coin for which *Heads* is twice as likely as *Tails* is tossed twice, independently. If the outcomes are two consecutive *Heads*, Bertie gets a \$15 reward; if the outcomes are different, Bertie gets a \$10 reward; if the outcomes are two consecutive *Tails*, Bertie has to pay \$5. What is the expected value of Bertie's winnings?

- (a) 75/9
- (b) 80/9
- (c) 85/9
- (d) 95/9
- (e) None of the above.

Solution: (d)

Since *Heads* is twice as likely as *Tails*, *Heads* appears with probability 2/3, while *Tails* appears with probability 1/3.

Let X denote the amount Bertie wins. Then, X has the following distribution:

$$X \sim \begin{cases} 15, & \text{with probability } 4/9, \\ 10, & \text{with probability } 4/9, \\ -5, & \text{with probability } 1/9. \end{cases}$$
$$\mathbb{E}[X] = \frac{4}{9}(15) + \frac{4}{9}(10) + \frac{1}{9}(-5) = \frac{95}{9}.$$

Problem 0.12. (5 pts) Which of the following formulas hold for the exponential function:

- (a) $\frac{1}{1+e^x} = \frac{1-e^{-x}}{e^x e^{-x}}$
- (b) $(e^x)^y = e^{xy}$
- (c) $e^{x+y} = e^x e^y$
- (d) All of the above.
- (e) None of the above.

Solution: The correct answer is (d).

Problem 0.13. (5 pts) Find the probability of obtaining exactly two *fives* in three rolls of a fair die, **given** that there is exactly one *five* in the first two rolls.

(a) $5/(2 \cdot 3)$

- (b) $5/(2^2 \cdot 3)$
- (c) $5/6^2$
- (d) 1/6
- (e) None of the above

Solution: (d)

Problem 0.14. (5 pts) Let Y be a random variable such that $\mathbb{P}[Y = 2] = 1/2$, $\mathbb{P}[Y = 3] = 1/3$ and $\mathbb{P}[Y = 6] = 1/6$. Then $\mathbb{E}[\min(Y, 5)] = \dots$

- (a) 2
- (b) 17/6
- (c) 3
- (d) 19/6
- (e) None of the above.

Solution: The correct answer is (b).

$$\mathbb{E}[\min(Y,5)] = \frac{1}{2}(2) + \frac{1}{3}(3) + \frac{1}{6}(5) = \frac{17}{6}.$$

10

Problem 0.15. (5 pts) A 5-year loan for 10,000 is charged an effective interest rate of 6% per half-year period.

The loan is to be repaid so that interest is repaid at the end of every 6 month period as it accrues and the principal is repaid in total at the end of the 5 years.

Denote the total amount of interest paid on this loan by I. Then,

(a) $I \approx 2,750$

- (b) $I \approx 3,000$
- (c) $I \approx 3,250$
- (d) $I \approx 3,500$
- (e) None of the above

Solution: (e)

 $10 \cdot (0.06) \cdot 10,000 = 6,000.$

Problem 0.16. (5 pts) Let $\Omega = \{a_1, a_2, a_3, a_4\}$ be an outcome space, and let \mathbb{P} be a probability distribution on Ω . Assume that $\mathbb{P}[\{a_1, a_2\}] = 1/3$, $\mathbb{P}[\{a_2, a_3\}] = 1/4$ and $\mathbb{P}[\{a_1, a_3\}] = 1/9$. Then we have that $\mathbb{P}[\{a_4\}]$ equals the following value:

- (a) 1/4
- (b) 11/18
- (c) 7/36
- (d) 47/72
- (e) None of the above

Solution: (d)

For any outcome space Ω , from the axioms of probability, we must have that $\mathbb{P}[\Omega] = 1$. In this case, $\Omega = \{a_1, a_2, a_3, a_4\}$, and so

$$\mathbb{P}[\Omega] = \mathbb{P}[\{a_1, a_2, a_3, a_4\}] = \mathbb{P}[\{a_1, a_2, a_3\}] + \mathbb{P}[\{a_4\}] = \frac{1}{2}\left(\frac{1}{3} + \frac{1}{4} + \frac{1}{9}\right) + \mathbb{P}[\{a_4\}].$$

Hence,

$$\mathbb{P}[\{a_4\}] = 1 - \frac{25}{72} = \frac{47}{72}.$$

Problem 0.17. (5 pts) Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be two functions given by

$$f(x) = 2x - 10$$

and

$$g(x) = \begin{cases} \min(x,7) & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

.

Then, g(f(7)) equals ...

(a) -4

- (b) 0
- (c) 4

(d) 7

(e) None of the above

Solution: (c)

12

Problem 0.18. (5 pts) Tuppy deposits \$100 into an account at time 0.

For the following three years and three months, he does not make any subsequent withdrawals or deposits and the account earns at a constant continuously compounded, risk-free interest rate r.

In the end, the balance in his account equals \$114. Then,

- (a) $0 \le r < 0.0150$
- (b) $0.0150 \le r < 0.0250$
- (c) $0.0250 \le r < 0.0550$
- (d) $0.0550 \le r < 0.0650$
- (e) None of the above

Solution: (c)

The unknown continuously compounded, risk-free interest rate r must satisfy

$$114 = 100e^{3.25r}.$$

So,

$$r = \ln(1.14)/3.25 \approx 0.0403.$$

Problem 0.19. (5 points) Let the accumulation function be given by

$$a(t) = (1 + 0.05)^{t^2}$$

Then, we can say the following about the continuously compounded, risk-free interest rate r associated with the above accumulation function:

- (a) r = 0.05
- (b) $r = 2\ln(1.05)$
- (c) r = 0.10

(d) The continuously compounded, risk-free interest rate is not constant.

(e) None of the above

Solution: (d)

$$r = \frac{d}{dt}\ln(a(t)) = \frac{d}{dt}\ln[1.05^{t^2}] = 2t\ln(1.05).$$

Problem 0.20. (5 points) Consider the following graph of a function $f: [0, \infty) \to \mathbb{R}$.

Then, we can say that the function f is ...

- (a) increasing.
- (b) decreasing.
- (c) both increasing and decreasing.
- (d) neither increasing nor decreasing.
- (e) None of the above

Solution: (d)