Problem. Find the ratio of the

90th percentile to the median of the dist'n w/ the density f'tion of the form

- : Observe Xn Exponential (mean = 0 = 10).

$$= > F_X(x) = 1 - e^{-0.1x}$$

Integrate or use the STAM Table

By def'n: The 100pth percentile is any Tip such that $F_{x}(Tip-) \leq p \leq F_{x}(Tip)$.

If we have $f_X(x)>0$ for every x>0, then F_X is strictly increasing

=> fx has an inverse

*\(\section 80.\) A charity receives 2025 contributions. Contributions are assumed to be mutually independent and identically distributed with mean 3125 and standard deviation 250.

Calculate the approximate 90th percentile for the distribution of the total contributions received.

- (A) 6,328,000
- (B) 6,338,000
- (C) 6,343,000
- (D) 6,784,000
- (E) 6,977,000
- 81. Claims filed under auto insurance policies follow a normal distribution with mean 19,400 and standard deviation 5,000.

Calculate the probability that the average of 25 randomly selected claims exceeds 20,000.

- (A) 0.01
- (B) 0.15
- (C) 0.27
- (D) 0.33
- (E) 0.45
- 82. An insurance company issues 1250 vision care insurance policies. The number of claims filed by a policyholder under a vision care insurance policy during one year is a Poisson random variable with mean 2. Assume the numbers of claims filed by different policyholders are mutually independent.

Calculate the approximate probability that there is a total of between 2450 and 2600 claims during a one-year period?

- (A) 0.68
- (B) 0.82
- (C) 0.87
- (D) 0.95
- (E) 1.00

By the CLT,

$$\frac{S = X_1 + X_2 + \cdots + X_{2025}}{S - E[S]} \approx N(0,1)$$

- · E[S] = 2025(3125) = 6,328,125
- · Var [S] = 2025 · Var [X]

 \Rightarrow SD[S] = 45. SD[X] = 45(250) = 11,250

Note: The percentile of a normal dist'n is the linear transform of the (same) percentile of the std normal dist'h.

In this problem, the 90th percentile of the std normal is 1.28

=> the 90th percent of 3 is approximately 6,328,125+11,250(1.28)=6,342,525

=>(C)

Focus on the p.g.f.

Consider Mo. valued random variables, i.e., Look @ rnd variables w/ support contained within No= {0, 1, 2,}

Denote such a random variable by N. By defh:

$$P_{N}(z) = \mathbb{E}[z^{N}]$$

$$= \sum_{n=0}^{+\infty} z^{n} \cdot p_{N}(n)$$

$$= z^{0} \cdot p_{N}(0) + z^{1} \cdot p_{N}(1) + \dots + z^{n} \cdot p_{N}(n) + \dots$$

=>
$$(P_{N}(0) = p_{N}(0))$$

 $P_{N}(1) = 1$
 $P_{N}(0) = p_{N}(1)$