Instructor: Milica Cudina

Note: You **must** show all your work. Numerical answers without a proper explanation or a clearly written down path to the solution will be assigned zero points.

Problem 6.1. (10 points) The aggregate loss random variable S has a compound Poisson claims distribution such that:

- i. Individual claim amounts may only be equal to 1, 2, or 3.
- ii. $\mathbb{E}[S] = 56$
- iii. Var[S] = 126
- iv. The rate of the Poisson claim count random variable is $\lambda = 29$. Determine the expected number of claims of size 2.

Problem 6.2. (15 points) In the compound model for aggregate claims, let the frequency random variable N be Negative Binomial with parameters r=2 and $\beta=4$, and let the common distribution of the i.i.d. severity random variables $\{X_j; j=1,2,\ldots\}$ be given by the probability (mass) function $p_X(1)=0.3$ and $p_X(2)=0.7$.

Let our usual assumptions hold, i.e., let N be independent of $\{X_j; j=1,2,\ldots\}$.

Define the aggregate loss as $S = \sum_{j=1}^{N} X_j$. Calculate $\mathbb{P}[S \leq 3]$.

Problem 6.3. (10 points) In the compound model for aggregate claims, let the frequency random variable N have the probability (mass) function

$$p_N(0) = 0.5, p_N(1) = 0.3, p_N(2) = 0.2.$$

Moreover, let the common distribution of the i.i.d. severity random variables $\{X_j; j = 1, 2, ...\}$ be given by the probability (mass) function $p_X(1) = 0.3$ and $p_X(2) = 0.7$.

Let our usual assumptions hold, i.e., let N be independent of $\{X_j; j = 1, 2, ...\}$.

Define the aggregate loss as $S = \sum_{j=1}^{N} X_j$.

Calculate $\mathbb{E}[(S-2)_+]$.

Problem 6.4. (10 points) In the compound model for aggregate claims, let the frequency random variable N have the Poisson distribution with mean 1.

Let the common distribution of the i.i.d. severity random variables $\{X_j; j=1,2,\dots\}$ be given by the following p.m.f.

$$p_X(100) = 1/2, p_X(200) = 3/10, p_X(300) = 1/5.$$

Let our usual assumptions hold, i.e., let N be independent of $\{X_j; j=1,2,\dots\}$. Define the aggregate loss as $S = \sum_{j=1}^{N} X_j$.

Find the expected value of the policyholder's payment for a stop-loss insurance policy with an ordinary deductible of 200, i.e., calculate $\mathbb{E}[S \wedge 200]$.

Problem 6.5. (5 pts) In the compound model for aggregate claims, let the frequency random variable N have the Poisson distribution with mean 5. Moreover, let the common distribution of the i.i.d. severity random variables $\{X_j; j=1,2,\ldots\}$ be the two-parameter Pareto with parameters $\alpha = 3$ and $\theta = 10$. Let our usual assumptions hold, i.e., let N be independent of ${X_j; j = 1, 2, \dots}.$

Define the aggregate loss as $S = \sum_{j=1}^{N} X_j$.

What is the variance of S?