Name:

 ${
m M339J}$ Probability Models with Actuarial Applications

University of Texas at Austin

In-Term Exam I

Instructor: Milica Čudina

 ${f Notes}$: This is a closed book and closed notes exam. The maximal score on this exam is 85

points.

Time: 50 minutes

MULTIPLE CHOICE

			MCLIII LL CHOICL						
TRUE/	FALSE	1.11 (5)	a	b	\mathbf{c}	d	e		
1.3 (2)	TRUE	FALSE	1 10 (5)		1		1		
1.4 (2)	 TRUE	FALSE	1.12 (5)	a	b	С	d	е	
1.4 (2)		TALSE	1.13 (5)	\mathbf{a}	b	c	d	e	
1.5 (2)	TRUE	FALSE							
1.6 (2)	TRUE	FALSE	1.14 (5)	a	b	c	d	e	
1.7 (2)	TRUE	FALSE	1.15 (5)	a	b	c	d	e	
l l									

FOR GRADER'S USE ONLY:

DEF'N	T/F	1.8	1.9	1.10	M.C.	Σ	

1.1. **DEFINITIONS.**

Problem 1.1. (10 points) Provide the definition of the *cumulative distribution function* of a random variable X.

Solution: The *cumulative distribution function* of a random variable X is the function F_X : $\mathbb{R} \to [0,1]$ given by

(1.1)
$$F_X(x) = \mathbb{P}[X \le x] \text{ for every } x \in \mathbb{R}.$$

Problem 1.2. (10 points) Provide the definition of a continuous random variable.

Solution: A random variable X is said to be *continuous* if its cumulative distribution function $F_X : \mathbb{R} \to [0, 1]$ satisfies the following properties:

- it is continuous everywhere; and
- it is differentiable everywhere with the possible exceptions of at most countably many values.

1.2. TRUE/FALSE QUESTIONS.

Please, note your chosen answer on the front page of this exam!

Problem 1.3. (2 pts) Let X have a Pareto distribution with parameters α and θ . Then, $\mathbb{E}[X^k]$ exists for every $k = 1, 2, \ldots$ True or false?

Solution: FALSE

Problem 1.4. (2 pts) Let the random variable X represent the outcome of rolling a fair dodecahedron (i.e., a 12 sided "die") with faces numbered 1 through 12. Then the expectation of X equals 6. True or false?

Solution: FALSE

$$\mathbb{E}[X] = \frac{1}{12}[1 + 2 + \dots + 12] = \frac{1}{12} \cdot \frac{12 \cdot 13}{2} = \frac{13}{2}.$$

Problem 1.5. (2 points) Let N be an \mathbb{N}_0 -valued random variable with the probability generating function P_N . As usual, p_N denotes the probability mass function of the random variable N. Then,

$$p_N(0) = P_N(0).$$

True or false?

Solution: TRUE

In fact, $P_N(0) = \mathbb{E}[0^N] = 0^0 p_N(0) = p_N(0)$.

Problem 1.6. (2 points) For a random variable X and for a positive constant d, in our usual notation, we have

(1.2)
$$\mathbb{E}[X] = e_X(d)S_X(d) + \mathbb{E}[X \wedge d].$$

True or false?

Solution: TRUE

Problem 1.7. (2 pts) Let X have the loglogistic distribution. Then, the random variable X' = 1/X also has the loglogistic distribution. True or false?

Solution: TRUE

From the tables, the cdf of X can be written as

$$F_X(x) = \frac{(x/\theta)^{\gamma}}{1 + (x/\theta)^{\gamma}}, \qquad x > 0,$$

for parameters γ and θ .

In class, we learned that for y > 0,

$$F_{X'}(y) = 1 - F_X(1/y)$$

$$= 1 - \frac{(1/y\theta)^{\gamma}}{1 + (1/y\theta)^{\gamma}}$$

$$= \frac{1}{1 + (1/y\theta)^{\gamma}}$$

$$= \frac{(y/\theta^*)^{\gamma}}{1 + (y/\theta^*)^{\gamma}}$$

with $\theta^* = 1/\theta$.

1.3. Free-response problems. Please, explain carefully all your statements and assumptions. Numerical results or single-word answers without an explanation (even if they're correct) are worth 0 points.

Problem 1.8. (10 points) A population of insureds consists of three types of people: α , β and γ . There are half as many people of Type α as of Type β people in the population. The number of Type γ people is equal to the total number of the remaining two types of people. The probability that a Type α person makes at least one claim in a year is 1/5. The probability that a Type β person makes at least one claim in a year is 2/5. The probability that a Type γ person makes at least one claim in a year is 3/5.

At the end of the year, a person is chosen at random from the population. It is observed that that person had at least one claim. What is the probability that the person was of Type β ?

Solution: From the given breakdown of the population, we conclude that

(1.3)
$$\mathbb{P}[\alpha] = 1/6, \quad \mathbb{P}[\beta] = 1/3, \quad \mathbb{P}[\gamma] = 1/2.$$

Let E denote the event that there was at least one claim. By Bayes' Theorem, we have that

(1.4)
$$\mathbb{P}[\beta \mid E] = \frac{\mathbb{P}[E \mid \beta] \times \mathbb{P}[\beta]}{\mathbb{P}[E \mid \alpha] \times \mathbb{P}[\alpha] + \mathbb{P}[E \mid \beta] \times \mathbb{P}[\beta] + \mathbb{P}[E \mid \gamma] \times \mathbb{P}[\gamma]}$$
$$= \frac{(2/5)(1/3)}{(1/5)(1/6) + (2/5)(1/3) + (3/5)(1/2)} = \frac{2}{7} .$$

Problem 1.9. (5 points) Assume that you are building a model for the ground-up loss random variable for home insurance. The homes you are insuring fall into two categories: mansions and cottages. Propose **one distribution** as a model for the ground-up loss you will be using for every home in your entire "population" of insured homes. Explain your reasoning in one or two sentences.

Solution: Any 2-point mixture of distributions with positive supports would work.

Problem 1.10. (15 points) Let X have a Pareto distribution with parameters α and θ . Define $Y = \ln(1 + \frac{X}{\theta})$.

Describe the distribution of the random variable Y, i.e., give the **name** of the distribution and the **values** of its parameters.

Solution: The distribution function of Y is obtained as follows: for every y > 0,

$$F_Y(y) = \mathbb{P}[Y \le y] = \mathbb{P}[\ln(1 + \frac{X}{\theta}) \le y]$$

$$= \mathbb{P}[1 + \frac{X}{\theta} \le e^y]$$

$$= \mathbb{P}[\frac{X}{\theta} \le e^y - 1]$$

$$= \mathbb{P}[X \le \theta(e^y - 1)].$$

Using the given distribution of X, we have

$$F_Y(y) = F_X(\theta(e^y - 1)) = 1 - (\frac{\theta}{\theta(e^y - 1) + \theta})^{\alpha} = 1 - e^{-\alpha y}.$$

We conclude that Y is exponential with the parameter $\theta^* = 1/\alpha$.

1.4. MULTIPLE CHOICE QUESTIONS.

Please, note your chosen answer on the front page of this exam!

Problem 1.11. (5 pts) Let the severity random variable X be continuous such that $f_X(x) > 0$ for all x > 0. Let Y^L denote the **per loss** random variable associated with X for some ordinary deductible d. Then the random variable Y^L is

- (a) continuous.
- (b) discrete, but not degenerate (constant).
- (c) degenerate (constant).
- (d) mixed.
- (e) None of the above

Solution: (d)

The c.d.f. of Y^L has a single jump at 0.

Problem 1.12. (5 pts) Source: Prof. Jim Daniel (personal communication).

The ground-up loss X is modeled by an exponential distribution with mean \$500. There is an ordinary deductible of d = 100. What can you say about the expected value of the per-loss random variable?

- (a) It is less than 100.
- (b) It is more than 100, but less than 250.
- (c) It is more than 250, but less than 375.
- (d) It is more than 375, but less than 500.
- (e) None of the above

Solution: (d)

Let

$$Y^L = (X - d)_+$$

with $X \sim Exp(\theta = 500)$ and d = 100. Then,

$$\mathbb{E}[Y^L] = \mathbb{E}[(X - d)\mathbb{I}_{[X > d]}]$$

$$= \int_d^\infty (x - d)\frac{1}{\theta}e^{-\frac{x}{\theta}dx}$$

$$= \int_0^\infty y\frac{1}{\theta}e^{-\frac{y+d}{\theta}dx}$$

$$= e^{-\frac{d}{\theta}}\int_0^\infty y\frac{1}{\theta}e^{-\frac{y}{\theta}dx}$$

$$= \theta e^{-\frac{d}{\theta}} = 500e^{-1/5} \approx 409.37.$$

Problem 1.13. (5 pts) Given that the hazard rate function of a random variable X equals $h_X(x) = 0.3x$ for x > 0, we can conclude that

- (a) $0 \le f_X(2) < 1/4$
- (b) $1/4 \le f_X(2) < 1/3$
- (c) $1/3 \le f_X(2) < 1/2$
- (d) $1/2 \le f_X(2) < 1$
- (e) None of the above.

Solution: (b)

The survival function of X is

$$S_X(x) = e^{-\int_0^x h_X(z) dz}$$

$$= e^{-0.3 \int_0^x z dz}$$

$$= e^{-0.3 \cdot \frac{1}{2} z^2 |_{z=0}^x}$$

$$= e^{-0.15x^2}, \qquad x \ge 0.$$

So, the density of X is given by

$$f_X(x) = -S'_X(x) = -(-0.15) \cdot 2x \cdot e^{-0.15x^2} = 0.3 x e^{-0.15x^2}, \qquad x \ge 0.$$

In particular,

$$f_X(2) = 0.6e^{-0.6} \approx 0.3293.$$

Problem 1.14. (5 points) A continuous random variable X has the *probability density function* of the following form

$$f_X(x) = \kappa x^{-5}$$
 for $x > 1$

where κ is a positive constant. Let x_* denote its 95^{th} percentile. Then,

- (a) $0 \le x_* < 1$
- (b) $1 \le x_* < 2$
- (c) $2 \le x_* < 3$
- (d) $3 \le x_* < 4$
- (e) None of the above.

Solution: (c)

$$(1.5) x^* = 2.115$$

Problem 1.15. (5 pts) Let the severity random variable X be continuous such that $f_X(x) > 0$ for all x > 0. Let Y^P denote the per payment random variable associated with X for some ordinary deductible d > 0. Then the random variable Y^P is

- (a) continuous.
- (b) discrete, but not degenerate (constant).
- (c) degenerate (constant).
- (d) mixed.
- (e) None of the above

Solution: (a)