Name:

M339J: Probability models University of Texas at Austin Sample In-Term Exam I Instructor: Milica Čudina

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 50

points.

Time: 50 minutes

TRUE/FALSE

MULTIPLE CHOICE

2 (2) TRUE FALSE 2 (5) a b c d e 3 (2) TRUE FALSE 3 (5) a b c d e	1(2)	(2) TRUE FA	ALSE $ 1(5) $	a	b	c	d	e
	2 (2)	2) TRUE FA	ALSE $2 (5)$	a	b	c	d	e
	3 (2)	2) TRUE FA	ALSE $3 (5)$	 a	b	c	d	e
4 (1) TRUE FALSE	4 (1)	1) TRUE FA	ALSE					
$\begin{bmatrix} 5 & (2) \end{bmatrix}$ TRUE FALSE $\begin{bmatrix} 4 & (5) \end{bmatrix}$ a b c d e	5 (2)	2) TRUE FA	ALSE $4 (5)$	a	b	c	d	e

1.1. **DEFINITION.**

Problem 1.1. Provide the definition of a *cumulative distribution function* of a random variable X.

1.2. TRUE/FALSE QUESTIONS. Please, note your final answer on the front page of this exam.

Problem 1.2. (2 pts) Let X be an exponential random variable. Then, its mean and its standard deviation are equal. *True or false?*

Problem 1.3. (2 pts) If the mean excess loss function is increasing, then the corresponding distribution has a heavy tail. *True or false?*

Problem 1.4. (2 points) Let N be an \mathbb{N}_0 -valued random variable with the probability generating function P_N . Then,

$$\mathbb{E}[N] = P_N'(0).$$

True or false?

Problem 1.5. (2 points) For a random variable X and for a positive constant d, in our usual notation, we have

(1.1)
$$\mathbb{E}[X] = e_X(d)S_X(d) + \mathbb{E}[X \wedge d].$$

True or false?

Problem 1.6. (2 pts) Let X have the loglogistic distribution. Then, the random variable X' = 1/X also has the loglogistic distribution. True or false?

1.3. **Free-response problems.** Please, explain carefully all your statements and assumptions. Numerical results or single-word answers without an explanation (even if they're correct) are worth 0 points.

Problem 1.7. (10 points) A population of insureds consists of three types of people: α , β and γ . There is an equal number of Type α and Type β people in the population. The number of Type γ people is equal to the total number of the remaining two types of people. The probability that a Type α person makes at least one claim in a year is 1/5. The probability that a Type β person makes at least one claim in a year is 2/5. The probability that a Type γ person makes at least one claim in a year is 3/5.

At the end of the year, a person is chosen at random from the population. It is observed that that person had at least one claim. What is the probability that the person was of Type β ?

Problem 1.8. (15 points) Losses X follow a Pareto distribution with parameters $\alpha > 1$ and θ unspecified. For a positive constant c, determine the ratio of the mean excess loss function evaluated at $c\theta$ to the mean excess loss function evaluated at θ .

Problem 1.9. (10 points) Let X have the exponential distribution with mean 4 and define $Y = \sqrt{X}$. Find $f_Y(3)$.

1.4. MULTIPLE CHOICE QUESTIONS. Please, note your final answers on the front page of this exam.

Problem 1.10. (5 pts) Source: Prof. Jim Daniel (personal communication).

The ground-up loss X is modeled by an Exponential distribution with mean \$500. There is an ordinary deductible of d = 100. What can you say about the expected value of the per-loss random variable?

- (a) It is less than 100.
- (b) It is more than 100, but less than 250.
- (c) It is more than 250, but less than 375.
- (d) It is more than 375, but less than 500.
- (e) None of the above

Problem 1.11. (5 pts) Let N be Poisson with variance 5 and let Z be Bernoulli with probability of success equal to 1/5. Assume that N and Z are independent. Let $\pi = \mathbb{P}[N+Z=4]$. Then, we have that

- (a) $0 \le p < 1/4$
- (b) $1/4 \le p < 1/2$
- (c) $1/2 \le p < 5/8$
- (d) 5/8
- (e) None of the above

Problem 1.12. (5 pts) Let X be exponential with variance 225. Let $a = \mathbb{E}[|20 - X|]$. Then,

- (a) $0 \le a < 50$
- (b) $50 \le a < 150$
- (c) $150 \le a < 325$
- (d) $325 \le a < 550$
- (e) None of the above.

Problem 1.13. (5 pts) Let X be exponential with mean 4 and let x_* denote its 90^{th} percentile. Then,

- (a) $0 \le x_* < 3$
- (b) $3 \le x_* < 5$
- (c) $5 \le x_* < 8$
- (d) $8 \le x_* < 10$
- (e) None of the above.

Problem 1.14. (5 points) A continuous random variable X has the *probability density function* of the following form

$$f_X(x) = \kappa x^{-5} \quad \text{for } x > 1$$

where κ is a positive constant. Let x_* denote its 95th percentile. Then,

- (a) $0 \le x_* < 1$
- (b) $1 \le x_* < 2$
- (c) $2 \le x_* < 3$
- (d) $3 \le x_* < 4$
- (e) None of the above.

Problem 1.15. (5 pts)Let X be the ground-up loss random variable. Assume that X has the exponential distribution with mean 5,000.

Let B denote the expected payment per loss on behalf of an insurer which wrote a policy with a deductible of 1,500 and with no maximum policy payment. Then,

- (a) $B \approx 1,700$
- (b) $B \approx 2,700$
- (c) $B \approx 3,700$
- (d) $B \approx 4,700$
- (e) None of the above