Subjective Probabilities

W) August 31st, 2018.

Individual investor forms an opinion about the probability distribution of the time-T stock price (SCT).

At the very least

SCT)... random variable denotes the asset price @ time.T

For now, focus on the investor's belief w/
respect to E[SCTI].

Assume: Invest in a portfolio (among the admissible ones) which has the highest Expected Profit.

University of Texas at Austin

Subjective probabilities.

Problem 1.1. IFM Sample (Introductory) Problem #6.

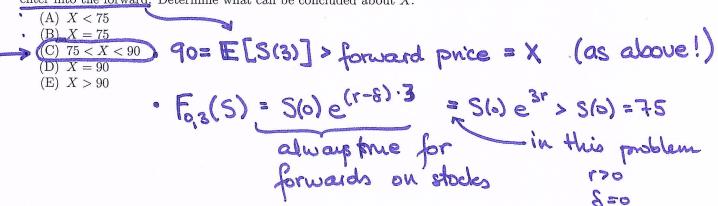
The following relates to one share of XYZ stock:

- The current price is 100.
- The forward price for delivery in one year is 105.
- \bullet An investor who decides to long the forward contract denotes by P the expected stock price in one year.

Determine which of the following statements about P is **TRUE**.

(A)
$$P < 100$$

(B) $P = 100$
(C) $100 < P < 105$
(D) $P = 105$
(E) $P > 105$
(E) $P > 105$
(E) $P > 105$
(E) $P > 105$


Problem 1.2. IFM Sample (Introductory) Problem #38.

E[2(3)] = 40

The current price of a medical companys stock is 75. The expected value of the stock price in three years is 90 per share. The stock pays no dividends. You are also given:

- The risk-free interest rate is positive.
- There are no transaction costs.
- Investors require compensation for risk.

The price of a three-year forward on a share of this stock is X, and at this price an investor is willing to enter into the forward. Determine what can be concluded about X.

Problem 1.3. IFM Sample (Introductory) Problem #70.

Investors in a certain stock demand to be compensated for risk. The current stock price is 100. The stock pays dividends at a rate proportional to its price. The dividend yield is 2%. The continuously compounded risk-free interest rate is 5%. Assume there are no transaction costs.

Let X represent the expected value of the stock price 2 years from today. Assume it is known that X is a whole number. Determine which of the following statements is true about X.

- (A) The only possible value of X is 105.
- (B) The largest possible value of X is 106.
- (C) The smallest possible value of X is 107.
- (D) The largest possible value of X is 110.
- (E) The smallest possible value of X is 111.

Investor invests in 1 share: Initial cost is SID)

At time 2: The investor owns
$$e^{0.02\cdot2}$$
 shares:

$$E[Rojit] = E[e^{8\cdot T} s(T) - SID]e^{rT} > 0$$

$$= > e^{0.04} E[S(T)] > 100 e^{0.05\cdot2}$$

$$= > X = E[S(2)] > 100 e^{0.06} = 106.18.$$

$$= > (C).$$

Recall: for n periods: the length of every period - returns are independent between periods returns are identically distributed for different periods (which are, by design, for every t, h: define the realized return (a random variable) $R(t,t+h) := ln\left(\frac{S(t+h)}{S(t+h)}\right)$ Recall the growth of money under r... ccrfir: alther.h = alt+h) accumulation Ition S(t+h) = S(t)e R(t,t+h)

We require: for (t, t+h) and (t+h, t+h+E) disjoint time intervals:

R(t,t+h) and R(t+h, t+h+E) (independent) · for (t,t+h) and (s,s+h) are (identically dishibited) we have: · for (t, t+s) and (t+s, t+s+h) $R(t,t+s) + R(t+s,t+s+h) = ln(\frac{s(t+s)}{s(t)})+$ $+ ln\left(\frac{S(t+s+h)}{S(t+s)}\right)$ = $ln\left(\frac{S(t+s)}{S(t)}, \frac{S(t+s+h)}{S(t+s)}\right) = ln\left(\frac{S(t+s+h)}{S(t)}\right)$ = R(t, t+9+h) We say that realized returns are ADDITIVE?

We will model the realized returns using the normal dist'n; all we need to look@:

R(O, t) ~ Normal (mean = µ, var = t2)

6

We already have:

o... the volatility parameter ?

we immediately know:

Var [R(0,1)] = 02, i.e., o = SD [R(0,1)]

O: What is the common volatility over a period of length h?

=> Var [R(0,t)] = T2 = 02. t