

More on Market-Making and Delta-Hedging

What do market makers do to delta-hedge?

- Recall that the delta-hedging strategy consists of **selling** one option, and **buying** a certain number Δ shares
- An example of Delta hedging for 2 days (daily rebalancing and mark-to-market):

Day 0: Share price = \$40, call price is \$2.7804, and $\Delta = 0.5824$

Sell call written on 100 shares for \$278.04, and buy 58.24 shares.

Net investment: $(58.24 \times \$40) - \$278.04 = \$2051.56$

At 8%, overnight financing charge is
 $\$0.45 = \$2051.56 \times (e^{-0.08/365} - 1)$

Day 1: If share price = \$40.5, call price is \$3.0621, and $\Delta = 0.6142$

Overnight profit/loss: $\$29.12 - \$28.17 - \$0.45 = \0.50 (mark-to-market)

Buy 3.18 additional shares for \$128.79 to rebalance

Day 2: If share price = \$39.25, call price is \$2.3282

- Overnight profit/loss: $\$76.78 + \$73.39 - \$0.48 = \3.87 (mark-to-market)

What do market makers do to delta-hedge?

- Recall that the delta-hedging strategy consists of **selling** one option, and **buying** a certain number Δ shares
- An example of Delta hedging for 2 days (daily rebalancing and mark-to-market):

Day 0: Share price = \$40, call price is \$2.7804, and $\Delta = 0.5824$

Sell call written on 100 shares for \$278.04, and buy 58.24 shares.

Net investment: $(58.24 \times \$40) - \$278.04 = \$2051.56$

At 8%, overnight financing charge is
 $\$0.45 = \$2051.56 \times (e^{-0.08/365} - 1)$

Day 1: If share price = \$40.5, call price is \$3.0621, and $\Delta = 0.6142$

Overnight profit/loss: $\$29.12 - \$28.17 - \$0.45 = \0.50 (mark-to-market)

Buy 3.18 additional shares for \$128.79 to rebalance

Day 2: If share price = \$39.25, call price is \$2.3282

- Overnight profit/loss: $\$76.78 + \$73.39 - \$0.48 = \3.87 (mark-to-market)

What do market makers do to delta-hedge?

- Recall that the delta-hedging strategy consists of **selling** one option, and **buying** a certain number Δ shares
- An example of Delta hedging for 2 days (daily rebalancing and mark-to-market):

Day 0: Share price = \$40, call price is \$2.7804, and $\Delta = 0.5824$

Sell call written on 100 shares for \$278.04, and buy 58.24 shares.

Net investment: $(58.24 \times \$40) - \$278.04 = \$2051.56$

At 8%, overnight financing charge is
 $\$0.45 = \$2051.56 \times (e^{-0.08/365} - 1)$

Day 1: If share price = \$40.5, call price is \$3.0621, and $\Delta = 0.6142$

Overnight profit/loss: $\$29.12 - \$28.17 - \$0.45 = \0.50 (mark-to-market)

Buy 3.18 additional shares for \$128.79 to rebalance

Day 2: If share price = \$39.25, call price is \$2.3282

- Overnight profit/loss: $\$76.78 + \$73.39 - \$0.48 = \3.87 (mark-to-market)

What do market makers do to delta-hedge?

- Recall that the delta-hedging strategy consists of **selling** one option, and **buying** a certain number Δ shares
- An example of Delta hedging for 2 days (daily rebalancing and mark-to-market):

Day 0: Share price = \$40, call price is \$2.7804, and $\Delta = 0.5824$

Sell call written on 100 shares for \$278.04, and buy 58.24 shares.

Net investment: $(58.24 \times \$40) - \$278.04 = \$2051.56$

At 8%, overnight financing charge is
 $\$0.45 = \$2051.56 \times (e^{-0.08/365} - 1)$

Day 1: If share price = \$40.5, call price is \$3.0621, and $\Delta = 0.6142$

Overnight profit/loss: $\$29.12 - \$28.17 - \$0.45 = \0.50 (mark-to-market)

Buy 3.18 additional shares for \$128.79 to rebalance

Day 2: If share price = \$39.25, call price is \$2.3282

- Overnight profit/loss: $\$76.78 + \$73.39 - \$0.48 = \3.87 (mark-to-market)

What do market makers do to delta-hedge?

- Recall that the delta-hedging strategy consists of **selling** one option, and **buying** a certain number Δ shares
- An example of Delta hedging for 2 days (daily rebalancing and mark-to-market):

Day 0: Share price = \$40, call price is \$2.7804, and $\Delta = 0.5824$

Sell call written on 100 shares for \$278.04, and buy 58.24 shares.

Net investment: $(58.24 \times \$40) - \$278.04 = \$2051.56$

At 8%, overnight financing charge is

$\$0.45 = \$2051.56 \times (e^{-0.08/365} - 1)$

Day 1: If share price = \$40.5, call price is \$3.0621, and $\Delta = 0.6142$

Overnight profit/loss: $\$29.12 - \$28.17 - \$0.45 =$

$\$0.50$ (mark-to-market)

Buy 3.18 additional shares for \$128.79 to rebalance

Day 2: If share price = \$39.25, call price is \$2.3282

- Overnight profit/loss: $\$76.78 + \$73.39 - \$0.48 =$
 $\$3.87$ (mark-to-market)

What do market makers do to delta-hedge?

- Recall that the delta-hedging strategy consists of **selling** one option, and **buying** a certain number Δ shares
- An example of Delta hedging for 2 days (daily rebalancing and mark-to-market):

Day 0: Share price = \$40, call price is \$2.7804, and $\Delta = 0.5824$

Sell call written on 100 shares for \$278.04, and buy 58.24 shares.

Net investment: $(58.24 \times \$40) - \$278.04 = \$2051.56$

At 8%, overnight financing charge is
 $\$0.45 = \$2051.56 \times (e^{-0.08/365} - 1)$

Day 1: If share price = \$40.5, call price is \$3.0621, and $\Delta = 0.6142$

Overnight profit/loss: \$29.12 - \$28.17 = \$0.45 =
\$0.50(mark-to-market)

Buy 3.18 additional shares for \$128.79 to rebalance

Day 2: If share price = \$39.25, call price is \$2.3282

- Overnight profit/loss: \$76.78 + \$73.39 = \$0.48 =
\$3.87(mark-to-market)

What do market makers do to delta-hedge?

- Recall that the delta-hedging strategy consists of **selling** one option, and **buying** a certain number Δ shares
- An example of Delta hedging for 2 days (daily rebalancing and mark-to-market):

Day 0: Share price = \$40, call price is \$2.7804, and $\Delta = 0.5824$

Sell call written on 100 shares for \$278.04, and buy 58.24 shares.

Net investment: $(58.24 \times \$40) - \$278.04 = \$2051.56$

At 8%, overnight financing charge is
 $\$0.45 = \$2051.56 \times (e^{-0.08/365} - 1)$

Day 1: If share price = \$40.5, call price is \$3.0621, and $\Delta = 0.6142$

Overnight profit/loss: \$29.12 - \$28.17 = \$0.45
\$0.50(mark-to-market)

Buy 3.18 additional shares for \$128.79 to rebalance

Day 2: If share price = \$39.25, call price is \$2.3282

- Overnight profit/loss: \$76.78 + \$73.39 = \$3.87(mark-to-market)

What do market makers do to delta-hedge?

- Recall that the delta-hedging strategy consists of **selling** one option, and **buying** a certain number Δ shares
- An example of Delta hedging for 2 days (daily rebalancing and mark-to-market):

Day 0: Share price = \$40, call price is \$2.7804, and $\Delta = 0.5824$

Sell call written on 100 shares for \$278.04, and buy 58.24 shares.

Net investment: $(58.24 \times \$40) - \$278.04 = \$2051.56$

At 8%, overnight financing charge is

$\$0.45 = \$2051.56 \times (e^{-0.08/365} - 1)$

Day 1: If share price = \$40.5, call price is \$3.0621, and $\Delta = 0.6142$

Overnight profit/loss: $\$29.12 - \$28.17 = \$0.45$

\$0.50(mark-to-market)

Buy 3.18 additional shares for \$128.79 to rebalance

Day 2: If share price = \$39.25, call price is \$2.3282

- Overnight profit/loss: $\$76.78 + \$73.39 = \$0.48$
\$3.87(mark-to-market)

What do market makers do to delta-hedge?

- Recall that the delta-hedging strategy consists of **selling** one option, and **buying** a certain number Δ shares
- An example of Delta hedging for 2 days (daily rebalancing and mark-to-market):

Day 0: Share price = \$40, call price is \$2.7804, and $\Delta = 0.5824$

Sell call written on 100 shares for \$278.04, and buy 58.24 shares.

Net investment: $(58.24 \times \$40) - \$278.04 = \$2051.56$

At 8%, overnight financing charge is
 $\$0.45 = \$2051.56 \times (e^{-0.08/365} - 1)$

Day 1: If share price = \$40.5, call price is \$3.0621, and $\Delta = 0.6142$

Overnight profit/loss: $\$29.12 - \$28.17 - \$0.45 = \0.50 (mark-to-market)

Buy 3.18 additional shares for \$128.79 to rebalance

Day 2: If share price = \$39.25, call price is \$2.3282

- Overnight profit/loss: $\$76.78 + \$73.39 - \$0.48 = \3.87 (mark-to-market)

What do market makers do to delta-hedge?

- Recall that the delta-hedging strategy consists of **selling** one option, and **buying** a certain number Δ shares
- An example of Delta hedging for 2 days (daily rebalancing and mark-to-market):

Day 0: Share price = \$40, call price is \$2.7804, and $\Delta = 0.5824$

Sell call written on 100 shares for \$278.04, and buy 58.24 shares.

Net investment: $(58.24 \times \$40) - \$278.04 = \$2051.56$

At 8%, overnight financing charge is
 $\$0.45 = \$2051.56 \times (e^{-0.08/365} - 1)$

Day 1: If share price = \$40.5, call price is \$3.0621, and $\Delta = 0.6142$

Overnight profit/loss: $\$29.12 - \$28.17 - \$0.45 = \0.50 (mark-to-market)

Buy 3.18 additional shares for \$128.79 to rebalance

Day 2: If share price = \$39.25, call price is \$2.3282

- Overnight profit/loss: $\$76.78 + \$73.39 - \$0.48 = \3.87 (mark-to-market)

Self-Financing Trading: Discrete Time

- Let X_k denote the value of the hedging portfolio at time k
- Let Δ_k denote the number of shares of stock held between times k and $k + 1$
- At time k , after rebalancing (i.e., moving from a position of Δ_{k-1} to a position of Δ_k), the amount we hold in the money market account is

$$X_k - S_k \Delta_k$$

- The value of the portfolio at time $k + 1$ is

$$X_{k+1} = \Delta_k S_{k+1} + (1 + r)(X_k - \Delta_k S_k)$$

Self-Financing Trading: Discrete Time

- Let X_k denote the value of the hedging portfolio at time k
- Let Δ_k denote the number of shares of stock held between times k and $k + 1$
- At time k , after rebalancing (i.e., moving from a position of Δ_{k-1} to a position of Δ_k), the amount we hold in the money market account is

$$X_k - S_k \Delta_k$$

- The value of the portfolio at time $k + 1$ is

$$X_{k+1} = \Delta_k S_{k+1} + (1 + r)(X_k - \Delta_k S_k)$$

Self-Financing Trading: Discrete Time

- Let X_k denote the value of the hedging portfolio at time k
- Let Δ_k denote the number of shares of stock held between times k and $k + 1$
- At time k , after rebalancing (i.e., moving from a position of Δ_{k-1} to a position of Δ_k), the amount we hold in the money market account is

$$X_k - S_k \Delta_k$$

- The value of the portfolio at time $k + 1$ is

$$X_{k+1} = \Delta_k S_{k+1} + (1 + r)(X_k - \Delta_k S_k)$$

Self-Financing Trading: Discrete Time

- Let X_k denote the value of the hedging portfolio at time k
- Let Δ_k denote the number of shares of stock held between times k and $k + 1$
- At time k , after rebalancing (i.e., moving from a position of Δ_{k-1} to a position of Δ_k), the amount we hold in the money market account is

$$X_k - S_k \Delta_k$$

- The value of the portfolio at time $k + 1$ is

$$X_{k+1} = \Delta_k S_{k+1} + (1 + r)(X_k - \Delta_k S_k)$$

Self-Financing Trading: Discrete Time - The Gain

- So, the gain between time k and time $k + 1$ is

$$X_{k+1} - X_k = \Delta_k(S_{k+1} - S_k) + r(X_k - \Delta_k S_k)$$

- This means that the gain is the sum of the capital gain from the stock holdings:

$$\Delta_k(S_{k+1} - S_k)$$

and the interest earnings from the money-market account

$$r(X_k - \Delta_k S_k)$$

Self-Financing Trading: Discrete Time - The Gain

- So, the gain between time k and time $k + 1$ is

$$X_{k+1} - X_k = \Delta_k(S_{k+1} - S_k) + r(X_k - \Delta_k S_k)$$

- This means that the gain is the sum of the capital gain from the stock holdings:

$$\Delta_k(S_{k+1} - S_k)$$

and the interest earnings from the money-market account

$$r(X_k - \Delta_k S_k)$$

Self-Financing Trading: Discrete Time - Introducing the Money-Market Account

- Define the value of a share in the money-market account at time k to be

$$M_k = (1 + r)^k$$

and let the number of shares of the money-market held at time k be denoted by Γ_k

Self-Financing Trading: Discrete Time

- The new expression for the gain

- So, the gain between time k and time $k + 1$ can now be written as

$$X_{k+1} - X_k = \Delta_k(S_{k+1} - S_k) + \Gamma_k(M_{k+1} - M_k)$$

- Thus, the gain is the sum of the capital gain from the stock investment holdings:

$$\Delta_k(S_{k+1} - S_k)$$

and the interest earnings from the money-market investment

$$\Gamma_k(M_{k+1} - M_k)$$

- The wealth at time $k + 1$ can be expressed as

$$X_{k+1} = \Delta_k S_{k+1} + \Gamma_k M_{k+1}$$

- However, Δ_k and Γ_k cannot be chosen arbitrarily.

Self-Financing Trading: Discrete Time

- The new expression for the gain

- So, the gain between time k and time $k + 1$ can now be written as

$$X_{k+1} - X_k = \Delta_k(S_{k+1} - S_k) + \Gamma_k(M_{k+1} - M_k)$$

- Thus, the gain is the sum of the capital gain from the stock investment holdings:

$$\Delta_k(S_{k+1} - S_k)$$

and the interest earnings from the money-market investment

$$\Gamma_k(M_{k+1} - M_k)$$

- The wealth at time $k + 1$ can be expressed as

$$X_{k+1} = \Delta_k S_{k+1} + \Gamma_k M_{k+1}$$

- However, Δ_k and Γ_k cannot be chosen arbitrarily.

Self-Financing Trading: Discrete Time

- The new expression for the gain

- So, the gain between time k and time $k + 1$ can now be written as

$$X_{k+1} - X_k = \Delta_k(S_{k+1} - S_k) + \Gamma_k(M_{k+1} - M_k)$$

- Thus, the gain is the sum of the capital gain from the stock investment holdings:

$$\Delta_k(S_{k+1} - S_k)$$

and the interest earnings from the money-market investment

$$\Gamma_k(M_{k+1} - M_k)$$

- The wealth at time $k + 1$ can be expressed as

$$X_{k+1} = \Delta_k S_{k+1} + \Gamma_k M_{k+1}$$

- However, Δ_k and Γ_k cannot be chosen arbitrarily.

Self-Financing Trading: Discrete Time

- The new expression for the gain

- So, the gain between time k and time $k + 1$ can now be written as

$$X_{k+1} - X_k = \Delta_k(S_{k+1} - S_k) + \Gamma_k(M_{k+1} - M_k)$$

- Thus, the gain is the sum of the capital gain from the stock investment holdings:

$$\Delta_k(S_{k+1} - S_k)$$

and the interest earnings from the money-market investment

$$\Gamma_k(M_{k+1} - M_k)$$

- The wealth at time $k + 1$ can be expressed as

$$X_{k+1} = \Delta_k S_{k+1} + \Gamma_k M_{k+1}$$

- However, Δ_k and Γ_k cannot be chosen arbitrarily.

Self-Financing Trading: Discrete Time

- The self-financing condition

- The agent arrives at time $k + 1$ with a portfolio of Δ_k shares of stock and Γ_k shares of the money market account and then rebalances, i.e., chooses Δ_{k+1} and Γ_{k+1}
- After rebalancing, the wealth of the agent is

$$X_{k+1} = \Delta_{k+1}S_{k+1} + \Gamma_{k+1}M_{k+1}$$

- The wealth of the agent cannot be changed through rebalancing, so it must be that

$$X_{k+1} = \Delta_{k+1}S_{k+1} + \Gamma_{k+1}M_{k+1} = \Delta_kS_{k+1} + \Gamma_kM_{k+1}$$

- The last equality yields the **discrete time self-financing condition**

$$S_{k+1}(\Delta_{k+1} - \Delta_k) + M_{k+1}(\Gamma_{k+1} - \Gamma_k) = 0$$

- The first term is the cost of rebalancing the stock and the second term is the cost of rebalancing the money-market account

Self-Financing Trading: Discrete Time

- The self-financing condition

- The agent arrives at time $k + 1$ with a portfolio of Δ_k shares of stock and Γ_k shares of the money market account and then rebalances, i.e., chooses Δ_{k+1} and Γ_{k+1}
- After rebalancing, the wealth of the agent is

$$X_{k+1} = \Delta_{k+1}S_{k+1} + \Gamma_{k+1}M_{k+1}$$

- The wealth of the agent cannot be changed through rebalancing, so it must be that

$$X_{k+1} = \Delta_{k+1}S_{k+1} + \Gamma_{k+1}M_{k+1} = \Delta_kS_{k+1} + \Gamma_kM_{k+1}$$

- The last equality yields the **discrete time self-financing condition**

$$S_{k+1}(\Delta_{k+1} - \Delta_k) + M_{k+1}(\Gamma_{k+1} - \Gamma_k) = 0$$

- The first term is the cost of rebalancing the stock and the second term is the cost of rebalancing the money-market account

Self-Financing Trading: Discrete Time

- The self-financing condition

- The agent arrives at time $k + 1$ with a portfolio of Δ_k shares of stock and Γ_k shares of the money market account and then rebalances, i.e., chooses Δ_{k+1} and Γ_{k+1}
- After rebalancing, the wealth of the agent is

$$X_{k+1} = \Delta_{k+1}S_{k+1} + \Gamma_{k+1}M_{k+1}$$

- The wealth of the agent cannot be changed through rebalancing, so it must be that

$$X_{k+1} = \Delta_{k+1}S_{k+1} + \Gamma_{k+1}M_{k+1} = \Delta_kS_{k+1} + \Gamma_kM_{k+1}$$

- The last equality yields the **discrete time self-financing condition**

$$S_{k+1}(\Delta_{k+1} - \Delta_k) + M_{k+1}(\Gamma_{k+1} - \Gamma_k) = 0$$

- The first term is the cost of rebalancing the stock and the second term is the cost of rebalancing the money-market account

Self-Financing Trading: Discrete Time

- The self-financing condition

- The agent arrives at time $k + 1$ with a portfolio of Δ_k shares of stock and Γ_k shares of the money market account and then rebalances, i.e., chooses Δ_{k+1} and Γ_{k+1}
- After rebalancing, the wealth of the agent is

$$X_{k+1} = \Delta_{k+1}S_{k+1} + \Gamma_{k+1}M_{k+1}$$

- The wealth of the agent cannot be changed through rebalancing, so it must be that

$$X_{k+1} = \Delta_{k+1}S_{k+1} + \Gamma_{k+1}M_{k+1} = \Delta_kS_{k+1} + \Gamma_kM_{k+1}$$

- The last equality yields the **discrete time self-financing condition**

$$S_{k+1}(\Delta_{k+1} - \Delta_k) + M_{k+1}(\Gamma_{k+1} - \Gamma_k) = 0$$

- The first term is the cost of rebalancing the stock and the second term is the cost of rebalancing the money-market account

Self-Financing Trading: Discrete Time

- The self-financing condition

- The agent arrives at time $k + 1$ with a portfolio of Δ_k shares of stock and Γ_k shares of the money market account and then rebalances, i.e., chooses Δ_{k+1} and Γ_{k+1}
- After rebalancing, the wealth of the agent is

$$X_{k+1} = \Delta_{k+1}S_{k+1} + \Gamma_{k+1}M_{k+1}$$

- The wealth of the agent cannot be changed through rebalancing, so it must be that

$$X_{k+1} = \Delta_{k+1}S_{k+1} + \Gamma_{k+1}M_{k+1} = \Delta_kS_{k+1} + \Gamma_kM_{k+1}$$

- The last equality yields the **discrete time self-financing condition**

$$S_{k+1}(\Delta_{k+1} - \Delta_k) + M_{k+1}(\Gamma_{k+1} - \Gamma_k) = 0$$

- The first term is the cost of rebalancing the stock and the second term is the cost of rebalancing the money-market account

Self-Financing Trading: Segue into the continuous time

- The discrete-time self-financing condition can be rewritten as

$$\begin{aligned} S_k(\Delta_{k+1} - \Delta_k) + (S_{k+1} - S_k)(\Delta_{k+1} - \Delta_k) \\ + M_k(\Gamma_{k+1} - \Gamma_k) + (M_{k+1} - M_k)(\Gamma_{k+1} - \Gamma_k) = 0 \end{aligned}$$

- This suggests the **continuous-time self-financing condition**

$$S_t d\Delta_t + dS_t d\Delta_t + M_t d\Gamma_t + dM_t d\Gamma_t = 0$$

- This claim can be proved using stochastic calculus ...

Self-Financing Trading: Segue into the continuous time

- The discrete-time self-financing condition can be rewritten as

$$\begin{aligned} S_k(\Delta_{k+1} - \Delta_k) + (S_{k+1} - S_k)(\Delta_{k+1} - \Delta_k) \\ + M_k(\Gamma_{k+1} - \Gamma_k) + (M_{k+1} - M_k)(\Gamma_{k+1} - \Gamma_k) = 0 \end{aligned}$$

- This suggests the **continuous-time self-financing condition**

$$S_t d\Delta_t + dS_t d\Delta_t + M_t d\Gamma_t + dM_t d\Gamma_t = 0$$

- This claim can be proved using stochastic calculus ...

Self-Financing Trading: Segue into the continuous time

- The discrete-time self-financing condition can be rewritten as

$$\begin{aligned} S_k(\Delta_{k+1} - \Delta_k) + (S_{k+1} - S_k)(\Delta_{k+1} - \Delta_k) \\ + M_k(\Gamma_{k+1} - \Gamma_k) + (M_{k+1} - M_k)(\Gamma_{k+1} - \Gamma_k) = 0 \end{aligned}$$

- This suggests the **continuous-time self-financing condition**

$$S_t d\Delta_t + dS_t d\Delta_t + M_t d\Gamma_t + dM_t d\Gamma_t = 0$$

- This claim can be proved using stochastic calculus

Recall the meaning of Delta

- An option written on an underlying asset S is most sensitive to the changes in the value of S
- The largest part of the risk comes from the price movements of asset S - which is reflected in the delta of the option, i.e., if C is the price of a call the most pronounced effect comes from

$$\Delta_C := \frac{\partial C}{\partial S}$$

- The replicating portfolio will always contain Δ_C shares of the underlying stock
- The portfolio which contains the option, along with Δ_C shares of stock will have the value of its Delta equal to zero - we say it is **delta neutral**

Recall the meaning of Delta

- An option written on an underlying asset S is most sensitive to the changes in the value of S
- The largest part of the risk comes from the price movements of asset S - which is reflected in the delta of the option, i.e., if C is the price of a call the most pronounced effect comes from

$$\Delta_C := \frac{\partial C}{\partial S}$$

- The replicating portfolio will always contain Δ_C shares of the underlying stock
- The portfolio which contains the option, along with Δ_C shares of stock will have the value of its Delta equal to zero - we say it is **delta neutral**

Recall the meaning of Delta

- An option written on an underlying asset S is most sensitive to the changes in the value of S
- The largest part of the risk comes from the price movements of asset S - which is reflected in the delta of the option, i.e., if C is the price of a call the most pronounced effect comes from

$$\Delta_C := \frac{\partial C}{\partial S}$$

- The replicating portfolio will always contain Δ_C shares of the underlying stock
- The portfolio which contains the option, along with Δ_C shares of stock will have the value of its Delta equal to zero - we say it is delta neutral

Recall the meaning of Delta

- An option written on an underlying asset S is most sensitive to the changes in the value of S
- The largest part of the risk comes from the price movements of asset S - which is reflected in the delta of the option, i.e., if C is the price of a call the most pronounced effect comes from

$$\Delta_C := \frac{\partial C}{\partial S}$$

- The replicating portfolio will always contain Δ_C shares of the underlying stock
- The portfolio which contains the option, along with Δ_C shares of stock will have the value of its Delta equal to zero - we say it is **delta neutral**

Recall the other Greeks

- If X denotes the price of a portfolio, we define

Theta:

$$\Theta := \frac{\partial X}{\partial t}$$

Gamma:

$$\Gamma := \frac{\partial^2 X}{\partial S^2}$$

Vega:

$$\mathcal{V} := \frac{\partial X}{\partial \sigma}$$

rho:

$$\rho := \frac{\partial X}{\partial r}$$

Recall the other Greeks

- If X denotes the price of a portfolio, we define

Theta:

$$\Theta := \frac{\partial X}{\partial t}$$

Gamma:

$$\Gamma := \frac{\partial^2 X}{\partial S^2}$$

Vega:

$$\mathcal{V} := \frac{\partial X}{\partial \sigma}$$

rho:

$$\rho := \frac{\partial X}{\partial r}$$

Recall the other Greeks

- If X denotes the price of a portfolio, we define

Theta:

$$\Theta := \frac{\partial X}{\partial t}$$

Gamma:

$$\Gamma := \frac{\partial^2 X}{\partial S^2}$$

Vega:

$$\mathcal{V} := \frac{\partial X}{\partial \sigma}$$

rho:

$$\rho := \frac{\partial X}{\partial r}$$

Recall the other Greeks

- If X denotes the price of a portfolio, we define

Theta:

$$\Theta := \frac{\partial X}{\partial t}$$

Gamma:

$$\Gamma := \frac{\partial^2 X}{\partial S^2}$$

Vega:

$$\mathcal{V} := \frac{\partial X}{\partial \sigma}$$

rho:

$$\rho := \frac{\partial X}{\partial r}$$

Recall the other Greeks

- If X denotes the price of a portfolio, we define

Theta:

$$\Theta := \frac{\partial X}{\partial t}$$

Gamma:

$$\Gamma := \frac{\partial^2 X}{\partial S^2}$$

Vega:

$$\mathcal{V} := \frac{\partial X}{\partial \sigma}$$

rho:

$$\rho := \frac{\partial X}{\partial r}$$

The Delta-Gamma-Theta Approximation

- In this model X depends only on the values of S and t (σ and r are assumed constant)
- The Taylor expansion of X gives us

$$\begin{aligned} X(t + \Delta t, S + \Delta S) \\ = X(t, s) \\ + \frac{\partial X(t, S)}{\partial S} \Delta S + \frac{\partial X(t, S)}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 X(t, S)}{\partial S^2} (\Delta S)^2 \\ + \text{higher order terms} \end{aligned}$$

$$\text{where } \Delta S = S(t + \Delta t) - S(t)$$

- Ignoring the higher order terms (as one would in establishing the Ito's Lemma), we get

$$\begin{aligned} X(t + \Delta t, S + \Delta S) \\ \approx X(t, s) + \Delta \cdot \Delta S + \Theta \cdot \Delta t + \frac{1}{2} \Gamma \cdot (\Delta S)^2 \end{aligned}$$

- So, we can aim to reduce the variability of the portfolio by making Δ and Γ small - we cannot do much about Θ

The Delta-Gamma-Theta Approximation

- In this model X depends only on the values of S and t (σ and r are assumed constant)
- The Taylor expansion of X gives us

$$\begin{aligned} X(t + \Delta t, S + \Delta S) \\ = X(t, s) \\ + \frac{\partial X(t, S)}{\partial S} \Delta S + \frac{\partial X(t, S)}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 X(t, S)}{\partial S^2} (\Delta S)^2 \\ + \text{higher order terms} \end{aligned}$$

where $\Delta S = S(t + \Delta t) - S(t)$

- Ignoring the higher order terms (as one would in establishing the Ito's Lemma), we get

$$\begin{aligned} X(t + \Delta t, S + \Delta S) \\ \approx X(t, s) + \Delta \cdot \Delta S + \Theta \cdot \Delta t + \frac{1}{2} \Gamma \cdot (\Delta S)^2 \end{aligned}$$

- So, we can aim to reduce the variability of the portfolio by making Δ and Γ small - we cannot do much about Θ

The Delta-Gamma-Theta Approximation

- In this model X depends only on the values of S and t (σ and r are assumed constant)
- The Taylor expansion of X gives us

$$\begin{aligned} X(t + \Delta t, S + \Delta S) \\ = X(t, s) \\ + \frac{\partial X(t, S)}{\partial S} \Delta S + \frac{\partial X(t, S)}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 X(t, S)}{\partial S^2} (\Delta S)^2 \\ + \text{higher order terms} \end{aligned}$$

where $\Delta S = S(t + \Delta t) - S(t)$

- Ignoring the higher order terms (as one would in establishing the Ito's Lemma), we get

$$\begin{aligned} X(t + \Delta t, S + \Delta S) \\ \approx X(t, s) + \Delta \cdot \Delta S + \Theta \cdot \Delta t + \frac{1}{2} \Gamma \cdot (\Delta S)^2 \end{aligned}$$

- So, we can aim to reduce the variability of the portfolio by making Δ and Γ small - we cannot do much about Θ

Understanding the Market-Maker's Portfolio

- Suppose that, at any time $t \leq T$, the market-maker is long $\Delta(t)$ shares of stock and short one call on that stock
- Then the cost/profit of his/her portfolio at time t equals

$$Y(t, S_t) = \Delta(t) \cdot S_t - C(t, S_t)$$

where $C(t, S_t)$ is the price of the call at time t

- Suppose that the cost/profit above is invested in the money-market account
- Then, the change in the value of the portfolio is

$$\Delta(t) \cdot \Delta S - (C(t + \Delta t, S(t + \Delta t)) - C(t, S(t))) - r \cdot \Delta t \cdot Y(t, S_t)$$

Understanding the Market-Maker's Portfolio

- Suppose that, at any time $t \leq T$, the market-maker is long $\Delta(t)$ shares of stock and short one call on that stock
- Then the cost/profit of his/her portfolio at time t equals

$$Y(t, S_t) = \Delta(t) \cdot S_t - C(t, S_t)$$

where $C(t, S_t)$ is the price of the call at time t

- Suppose that the cost/profit above is invested in the money-market account
- Then, the change in the value of the portfolio is

$$\Delta(t) \cdot \Delta S - (C(t + \Delta t, S(t + \Delta t)) - C(t, S(t))) - r \cdot \Delta t \cdot Y(t, S_t)$$

Understanding the Market-Maker's Portfolio

- Suppose that, at any time $t \leq T$, the market-maker is long $\Delta(t)$ shares of stock and short one call on that stock
- Then the cost/profit of his/her portfolio at time t equals

$$Y(t, S_t) = \Delta(t) \cdot S_t - C(t, S_t)$$

where $C(t, S_t)$ is the price of the call at time t

- Suppose that the cost/profit above is invested in the money-market account
- Then, the change in the value of the portfolio is

$$\Delta(t) \cdot \Delta S - (C(t + \Delta t, S(t + \Delta t)) - C(t, S(t))) - r \cdot \Delta t \cdot Y(t, S_t)$$

Understanding the Market-Maker's Portfolio

- Suppose that, at any time $t \leq T$, the market-maker is long $\Delta(t)$ shares of stock and short one call on that stock
- Then the cost/profit of his/her portfolio at time t equals

$$Y(t, S_t) = \Delta(t) \cdot S_t - C(t, S_t)$$

where $C(t, S_t)$ is the price of the call at time t

- Suppose that the cost/profit above is invested in the money-market account
- Then, the change in the value of the portfolio is

$$\Delta(t) \cdot \Delta S - (C(t + \Delta t, S(t + \Delta t)) - C(t, S(t))) - r \cdot \Delta t \cdot Y(t, S_t)$$

Understanding the Market-Maker's Portfolio: An Approximation

- The Taylor approximation similar to the one we conducted earlier yields that the change in the market-maker's portfolio is approximately

$$-\left(\frac{1}{2}(\Delta S)^2 \cdot \Gamma + \Delta t \cdot \Theta + r\Delta t \cdot (\Delta \cdot S_t - C(t, S(t)))\right)$$

where the Greeks are calculated at time t

The Merton-Black-Scholes model

- In the Black-Scholes setting, for an option with price $C = C(t, s)$ we have that

$$(\Delta S)^2 \approx (dS)^2 = \sigma^2 S^2 dt$$

- So, we get

$$\Theta + \frac{1}{2} \sigma^2 S^2 \Gamma + r(S\Delta - C) = 0$$

- Note that the value of Θ is fixed once we fix the values of Δ and Γ
- Note that Γ is the measure of risk the hedger faces as a result of not rebalancing frequently enough
- so, in the absence of **transaction costs**, the agent should rebalance often as this reduces the variance of his/her portfolio

The Merton-Black-Scholes model

- In the Black-Scholes setting, for an option with price $C = C(t, s)$ we have that

$$(\Delta S)^2 \approx (dS)^2 = \sigma^2 S^2 dt$$

- So, we get

$$\Theta + \frac{1}{2} \sigma^2 S^2 \Gamma + r(S\Delta - C) = 0$$

- Note that the value of Θ is fixed once we fix the values of Δ and Γ
- Note that Γ is the measure of risk the hedger faces as a result of not rebalancing frequently enough
- so, in the absence of **transaction costs**, the agent should rebalance often as this reduces the variance of his/her portfolio

The Merton-Black-Scholes model

- In the Black-Scholes setting, for an option with price $C = C(t, s)$ we have that

$$(\Delta S)^2 \approx (dS)^2 = \sigma^2 S^2 dt$$

- So, we get

$$\Theta + \frac{1}{2} \sigma^2 S^2 \Gamma + r(S\Delta - C) = 0$$

- Note that the value of Θ is fixed once we fix the values of Δ and Γ
- Note that Γ is the measure of risk the hedger faces as a result of not rebalancing frequently enough
- so, in the absence of **transaction costs**, the agent should rebalance often as this reduces the variance of his/her portfolio

The Merton-Black-Scholes model

- In the Black-Scholes setting, for an option with price $C = C(t, s)$ we have that

$$(\Delta S)^2 \approx (dS)^2 = \sigma^2 S^2 dt$$

- So, we get

$$\Theta + \frac{1}{2} \sigma^2 S^2 \Gamma + r(S\Delta - C) = 0$$

- Note that the value of Θ is fixed once we fix the values of Δ and Γ
- Note that Γ is the measure of risk the hedger faces as a result of not rebalancing frequently enough
- so, in the absence of **transaction costs**, the agent should rebalance often as this reduces the variance of his/her portfolio

Delta-Hedging of American Options

- The recipe for Delta-hedging is the same as for the European option, but restricted to the **continuation region**, i.e., the region prior to early exercise (if it is to happen)
- We do not have closed form expressions for the boundaries of the continuation region for the finite-expiration American options in general, but we have numerical recipes

Delta-Hedging of American Options

- The recipe for Delta-hedging is the same as for the European option, but restricted to the **continuation region**, i.e., the region prior to early exercise (if it is to happen)
- We do not have closed form expressions for the boundaries of the continuation region for the finite-expiration American options in general, but we have numerical recipes

Delta-Hedging in Practice

- As we have seen thus far, the market-maker may adopt a **Delta-neutral** position to try to make her portfolio less sensitive to uncertainty, i.e., the changes in S
- Alternatively, one may adopt a **Gamma-neutral** position by using options to hedge - it is necessary to use other types of options for this strategy
- Augment the portfolio by buying deep-out-of-the-money options as insurance - this is probably not a viable strategy
- Use **static option replication** according to put-call parity to form a both Delta- and Gamma-neutral hedge
- A relatively novel approach involves trading the hedging error as another **financial product**

Delta-Hedging in Practice

- As we have seen thus far, the market-maker may adopt a **Delta-neutral** position to try to make her portfolio less sensitive to uncertainty, i.e., the changes in S
- Alternatively, one may adopt a **Gamma-neutral** position by using options to hedge - it is necessary to use other types of options for this strategy
- Augment the portfolio by buying deep-out-of-the-money options as insurance - this is probably not a viable strategy
- Use **static option replication** according to put-call parity to form a both Delta- and Gamma-neutral hedge
- A relatively novel approach involves trading the hedging error as another **financial product**

Delta-Hedging in Practice

- As we have seen thus far, the market-maker may adopt a **Delta-neutral** position to try to make her portfolio less sensitive to uncertainty, i.e., the changes in S
- Alternatively, one may adopt a **Gamma-neutral** position by using options to hedge - it is necessary to use other types of options for this strategy
- Augment the portfolio by buying deep-out-of-the-money options as insurance - this is probably not a viable strategy
- Use **static option replication** according to put-call parity to form a both Delta- and Gamma-neutral hedge
- A relatively novel approach involves trading the hedging error as another **financial product**

Delta-Hedging in Practice

- As we have seen thus far, the market-maker may adopt a **Delta-neutral** position to try to make her portfolio less sensitive to uncertainty, i.e., the changes in S
- Alternatively, one may adopt a **Gamma-neutral** position by using options to hedge - it is necessary to use other types of options for this strategy
- Augment the portfolio by buying deep-out-of-the-money options as insurance - this is probably not a viable strategy
- Use **static option replication** according to put-call parity to form a both Delta- and Gamma-neutral hedge
- A relatively novel approach involves trading the hedging error as another **financial product**

Delta-Hedging in Practice

- As we have seen thus far, the market-maker may adopt a **Delta-neutral** position to try to make her portfolio less sensitive to uncertainty, i.e., the changes in S
- Alternatively, one may adopt a **Gamma-neutral** position by using options to hedge - it is necessary to use other types of options for this strategy
- Augment the portfolio by buying deep-out-of-the-money options as insurance - this is probably not a viable strategy
- Use **static option replication** according to put-call parity to form a both Delta- and Gamma-neutral hedge
- A relatively novel approach involves trading the hedging error as another **financial product**

Gamma-Neutrality

- Denote by Γ the gamma of a certain portfolio X and by Γ_C the gamma of a certain contingent claim C .
- In addition to having X , we want to buy/sell n contracts of C in order to make the entire portfolio gamma-neutral, i.e., we want to have

$$\Gamma + n\Gamma_C = 0$$

- So, the correct number of contingent claims C to buy/sell is

$$n = -\frac{\Gamma}{\Gamma_C}$$

- However, this addition to our position changes the delta of the entire portfolio
- To rectify this, we trade a certain (appropriate) number of the shares of the underlying asset to make the entire portfolio delta-neutral, as well
- Note that the last step does not alter the gamma of the entire portfolio, as the gamma of the underlying stock is always equal to zero

Gamma-Neutrality

- Denote by Γ the gamma of a certain portfolio X and by Γ_C the gamma of a certain contingent claim C .
- In addition to having X , we want to buy/sell n contracts of C in order to make the entire portfolio gamma-neutral, i.e., we want to have

$$\Gamma + n\Gamma_C = 0$$

- So, the correct number of contingent claims C to buy/sell is

$$n = -\frac{\Gamma}{\Gamma_C}$$

- However, this addition to our position changes the delta of the entire portfolio
- To rectify this, we trade a certain (appropriate) number of the shares of the underlying asset to make the entire portfolio delta-neutral, as well
- Note that the last step does not alter the gamma of the entire portfolio, as the gamma of the underlying stock is always equal to zero

Gamma-Neutrality

- Denote by Γ the gamma of a certain portfolio X and by Γ_C the gamma of a certain contingent claim C .
- In addition to having X , we want to buy/sell n contracts of C in order to make the entire portfolio gamma-neutral, i.e., we want to have

$$\Gamma + n\Gamma_C = 0$$

- So, the correct number of contingent claims C to buy/sell is

$$n = -\frac{\Gamma}{\Gamma_C}$$

- However, this addition to our position changes the delta of the entire portfolio
- To rectify this, we trade a certain (appropriate) number of the shares of the underlying asset to make the entire portfolio delta-neutral, as well
- Note that the last step does not alter the gamma of the entire portfolio, as the gamma of the underlying stock is always equal to zero

Gamma-Neutrality

- Denote by Γ the gamma of a certain portfolio X and by Γ_C the gamma of a certain contingent claim C .
- In addition to having X , we want to buy/sell n contracts of C in order to make the entire portfolio gamma-neutral, i.e., we want to have

$$\Gamma + n\Gamma_C = 0$$

- So, the correct number of contingent claims C to buy/sell is

$$n = -\frac{\Gamma}{\Gamma_C}$$

- However, this addition to our position changes the delta of the entire portfolio
- To rectify this, we trade a certain (appropriate) number of the shares of the underlying asset to make the entire portfolio delta-neutral, as well
- Note that the last step does not alter the gamma of the entire portfolio, as the gamma of the underlying stock is always equal to zero

Gamma-Neutrality

- Denote by Γ the gamma of a certain portfolio X and by Γ_C the gamma of a certain contingent claim C .
- In addition to having X , we want to buy/sell n contracts of C in order to make the entire portfolio gamma-neutral, i.e., we want to have

$$\Gamma + n\Gamma_C = 0$$

- So, the correct number of contingent claims C to buy/sell is

$$n = -\frac{\Gamma}{\Gamma_C}$$

- However, this addition to our position changes the delta of the entire portfolio
- To rectify this, we trade a certain (appropriate) number of the shares of the underlying asset to make the entire portfolio delta-neutral, as well
- Note that the last step does not alter the gamma of the entire portfolio, as the gamma of the underlying stock is always equal to zero

Gamma-Neutrality

- Denote by Γ the gamma of a certain portfolio X and by Γ_C the gamma of a certain contingent claim C .
- In addition to having X , we want to buy/sell n contracts of C in order to make the entire portfolio gamma-neutral, i.e., we want to have

$$\Gamma + n\Gamma_C = 0$$

- So, the correct number of contingent claims C to buy/sell is

$$n = -\frac{\Gamma}{\Gamma_C}$$

- However, this addition to our position changes the delta of the entire portfolio
- To rectify this, we trade a certain (appropriate) number of the shares of the underlying asset to make the entire portfolio delta-neutral, as well
- Note that the last step does not alter the gamma of the entire portfolio, as the gamma of the underlying stock is always equal to zero

Gamma-Neutrality: An Example

- Consider a Delta-neutral portfolio X that has $\Gamma = -5,000$
- Assume that the traded option has $\Delta_C = 0.4$ and $\Gamma_C = 2$
- We offset the negative gamma of the portfolio X by purchasing $n = 5,000/2 - 2,500$ option contracts
- The resulting portfolio is gamma-neutral, but has the delta equal to

$$\Delta_{new} = 2,500\Delta_C = 2,500 \cdot 0.4 = 1,000$$

- To rectify this, we should sell 1,000 shares of the underlying asset
- Similarly, one should be able to make one's portfolio neutral with respect to the other Greeks if there is nontrivial dependence of the portfolio on the relevant parameter (r or σ , e.g.)

Gamma-Neutrality: An Example

- Consider a Delta-neutral portfolio X that has $\Gamma = -5,000$
- Assume that the traded option has $\Delta_C = 0.4$ and $\Gamma_C = 2$
- We offset the negative gamma of the portfolio X by purchasing $n = 5,000/2 - 2,500$ option contracts
- The resulting portfolio is gamma-neutral, but has the delta equal to

$$\Delta_{new} = 2,500\Delta_C = 2,500 \cdot 0.4 = 1,000$$

- To rectify this, we should sell 1,000 shares of the underlying asset
- Similarly, one should be able to make one's portfolio neutral with respect to the other Greeks if there is nontrivial dependence of the portfolio on the relevant parameter (r or σ , e.g.)

Gamma-Neutrality: An Example

- Consider a Delta-neutral portfolio X that has $\Gamma = -5,000$
- Assume that the traded option has $\Delta_C = 0.4$ and $\Gamma_C = 2$
- We offset the negative gamma of the portfolio X by purchasing $n = 5,000/2 - 2,500$ option contracts
- The resulting portfolio is gamma-neutral, but has the delta equal to

$$\Delta_{new} = 2,500\Delta_C = 2,500 \cdot 0.4 = 1,000$$

- To rectify this, we should sell 1,000 shares of the underlying asset
- Similarly, one should be able to make one's portfolio neutral with respect to the other Greeks if there is nontrivial dependence of the portfolio on the relevant parameter (r or σ , e.g.)

Gamma-Neutrality: An Example

- Consider a Delta-neutral portfolio X that has $\Gamma = -5,000$
- Assume that the traded option has $\Delta_C = 0.4$ and $\Gamma_C = 2$
- We offset the negative gamma of the portfolio X by purchasing $n = 5,000/2 - 2,500$ option contracts
- The resulting portfolio is gamma-neutral, but has the delta equal to

$$\Delta_{new} = 2,500\Delta_C = 2,500 \cdot 0.4 = 1,000$$

- To rectify this, we should sell 1,000 shares of the underlying asset
- Similarly, one should be able to make one's portfolio neutral with respect to the other Greeks if there is nontrivial dependence of the portfolio on the relevant parameter (r or σ , e.g.)

Gamma-Neutrality: An Example

- Consider a Delta-neutral portfolio X that has $\Gamma = -5,000$
- Assume that the traded option has $\Delta_C = 0.4$ and $\Gamma_C = 2$
- We offset the negative gamma of the portfolio X by purchasing $n = 5,000/2 - 2,500$ option contracts
- The resulting portfolio is gamma-neutral, but has the delta equal to

$$\Delta_{new} = 2,500\Delta_C = 2,500 \cdot 0.4 = 1,000$$

- To rectify this, we should sell 1,000 shares of the underlying asset
- Similarly, one should be able to make one's portfolio neutral with respect to the other Greeks if there is nontrivial dependence of the portfolio on the relevant parameter (r or σ , e.g.)

Gamma-Neutrality: An Example

- Consider a Delta-neutral portfolio X that has $\Gamma = -5,000$
- Assume that the traded option has $\Delta_C = 0.4$ and $\Gamma_C = 2$
- We offset the negative gamma of the portfolio X by purchasing $n = 5,000/2 - 2,500$ option contracts
- The resulting portfolio is gamma-neutral, but has the delta equal to

$$\Delta_{new} = 2,500\Delta_C = 2,500 \cdot 0.4 = 1,000$$

- To rectify this, we should sell 1,000 shares of the underlying asset
- Similarly, one should be able to make one's portfolio neutral with respect to the other Greeks if there is nontrivial dependence of the portfolio on the relevant parameter (r or σ , e.g.)

Market-Making As Insurance

- Insurance companies have two ways of dealing with unexpectedly large loss claims:
 1. Hold capital reserves
 2. Diversify risk by buying reinsurance
- Market-makers also have two analogous ways to deal with excessive losses:
 1. Hold capital to cushion against less-diversifiable risks - When risks are not fully diversifiable, holding capital is inevitable
 2. Reinsure by trading in out-of-the-money options

Market-Making As Insurance

- Insurance companies have two ways of dealing with unexpectedly large loss claims:
 1. Hold capital reserves
 2. Diversify risk by buying reinsurance
- Market-makers also have two analogous ways to deal with excessive losses:
 1. Hold capital to cushion against less-diversifiable risks - When risks are not fully diversifiable, holding capital is inevitable
 2. Reinsure by trading in out-of-the-money options

Market-Making As Insurance

- Insurance companies have two ways of dealing with unexpectedly large loss claims:
 1. Hold capital reserves
 2. Diversify risk by buying reinsurance
- Market-makers also have two analogous ways to deal with excessive losses:
 1. Hold capital to cushion against less-diversifiable risks - When risks are not fully diversifiable, holding capital is inevitable
 2. Reinsure by trading in out-of-the-money options

Market-Making As Insurance

- Insurance companies have two ways of dealing with unexpectedly large loss claims:
 1. Hold capital reserves
 2. Diversify risk by buying reinsurance
- Market-makers also have two analogous ways to deal with excessive losses:
 1. Hold capital to cushion against less-diversifiable risks - When risks are not fully diversifiable, holding capital is inevitable
 2. Reinsure by trading in out-of-the-money options

Market-Making As Insurance

- Insurance companies have two ways of dealing with unexpectedly large loss claims:
 1. Hold capital reserves
 2. Diversify risk by buying reinsurance
- Market-makers also have two analogous ways to deal with excessive losses:
 1. Hold capital to cushion against less-diversifiable risks - When risks are not fully diversifiable, holding capital is inevitable
 2. Reinsure by trading in out-of-the-money options

Market-Making As Insurance

- Insurance companies have two ways of dealing with unexpectedly large loss claims:
 1. Hold capital reserves
 2. Diversify risk by buying reinsurance
- Market-makers also have two analogous ways to deal with excessive losses:
 1. Hold capital to cushion against less-diversifiable risks - When risks are not fully diversifiable, holding capital is inevitable
 2. Reinsure by trading in out-of-the-money options