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UNIVERSITY OF TEXAS AT AUSTIN
Lecture 2
Black-Derman-Toy.

2.1. The Black-Derman-Toy (BDT) Tree. The basic idea of the BDT model is to com-
pute a binomial tree of short-term interest rates, with a flexible enough structure to match
the data. Consider market information about bonds that we would like to match; namely,
we would like to match (effective annual) yield to maturity, bond prices and the volatility of
the bond yields (see Table 24.2 in the textbook). Black, Derman, and Toy describe their
tree as driven by the short-term rate, which they assume is lognormally distributed. For
each period in the tree, there are two parameters:

e R;, is a rate level parameter at a given time; and
e 0, is a volatility parameter

where h stands for the length of every period while 2 denotes the number of periods that have
elapsed so far in the tree. These parameters are chosen to match the tree with the observed
data. The general form of the BDT tree is displayed in Figure 24.4 in the textbook.

Remark 2.1. The models we have examined are arbitrage-free in a world consistent with their
assumptions. This world is our market-model. In the real world, however, we recognize the
following phenomenon. Every parametric model worth considering is going to be relatively
sparse in the sense that it has a relatively small number of parameters. These parameters are
frequently estimated using observations. This process of matching a model to fit the data
is called calibration. By design, we cannot use all of the observed prices in calibration.
The model is a simplified reflection of the whole world and it cannot include all of the prices
present in reality. In particular, the Black-Derman-Toy (BDT) tree is a binomial interest
rate tree calibrated to match zero-coupon bond yields and a particular set of volatilities. We
will notice that the model generates apparent arbitrage opportunities, i.e., observed prices
that do not match theoretical prices obtained using the model. This is not suprising and is
a characteristic of just about any predictive statistical model.

2.1.1. The construction. Let the time-h price of a zero-coupon bond maturing at time 7' if
the time-h short-term rate is r(h) be denoted by P[h,T,r(h)]. Then, the annualized yield
of this bond is

ylh, T,7(h)] = P[h,T,r(h)]"VT=H 1

Assume that at time h, the short-term rate r(h) can take on the two values: 7, and ry.
Then, the annualized lognormal yield volatility (the variance of a linear transformation of a
Bernoulli random variable, really!) equals

n
2\/E y<h7 T7 rd)
Here is the way to populate the BDT tree moving from the left to the right so that it is
consistent with:

(1) the observed terms structure,
(2) our specification (maybe an estimate) of the volatility.
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It is customary to assume that the risk-neutral probability in a BDT tree equals p = 1/2.
We start at early nodes and work to the later nodes, building the tree “outward”, i.e., from
the parent nodes to the offspring nodes and one time-period at a time.

The first node is given by the prevailing 1-year spot rate we temporarily denote by Rj.
If the Ry itself is provided, we write it in the root node of the interest-rate tree. Let the
observed one-dollar, 1-year zero-coupon bond price be denoted by F,. The spot rate and the
bond price need to be consistent with one another in the following way

Py =1/(1+ Ry).

Whence, if the bond prices are provided, we solve for Ry above and write it in the tree.

For the up/down nodes at the end of the first period, let the year-1 price of a 1-year bond
be denoted by P(1,2,r,) or P(1,2,14), depending on the movement of the interest rate. Let
P, be the observed year-1 price of a 1-year bond. If o7 denotes the volatility of the interest
rates at time—1, then in our model, we can follow this notational convention r, = rqse?’t.
We require these two consistency conditions be satisfied:

1T | 1 1 1
P _ Lpaar)+ P02y =
T 1t R {2 (1,2,m) + 5 P( ”)} 1+ R {2(1+7‘u)+2(1+rd)}

1 1 1
14+ Ry [2(1 + rqe®on) + 2(1 +rd)} ’

1 1 P(1,2,r,) =1 1 i (7w 1 1 r €271
= —In = —In - = —1n .
T\ P2t o1) 20 \n) T 2 ra

If the zero-coupon bond prices at time—0 are given, the above is a system of two equations
with two unknowns ry and o;. We solve for the two and continuw to follow this recipe to
enter values at the remaining nodes for each subsequent period.

Example 2.2. BDT tree from specified volatilities
Let the current effective annual spot rates be

ro(0,1) = 0.04, 70(0,2) =0.045, 7,(0,3) = 0.05.

Additionally, we assume that the BDT tree is constructed under the assumption that the
volatility of the annual effective one-year spot rates in one year is oy = 0.08 and that the
volatility of the annual effective one-year spot rates in two years is g9 = 0.10.

At the end of the first period, we find the values of r, and ry consistent with the above
specified spot rates and volatility o1 = 0.08. From the two-year spot rate, we have
1 1 1 [ 1 1

= X —
T+ 700.2)2  1+7r00.1) 2 |[T+me 1+,

So,

R TS Lo, 208 11

. oL + rqe’ +ryg . D +rg
(1.045)2  1.04 2|1 016 1 1.0452 1 016~ 1

We solve for r4 in the following equation:

L1+ 74) (1 +1qe™%) = 1+ 1rge®% + 1+ 14 = 2+ r4(1 + €*19).
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The quadratic in r4 becomes
2.23r3 +1.96r —01=0 = 1ry=0.0483.
So, the interest rate at the up node equals 7, = rge??t = 0.0483¢%16 = 0.0568.

At the end of the second period, we need to figure out the interest rates ry,, 7. and rg
(the BDT is recombining). According to the BDT model, if the volatility oy of interest rates
at time—2 is given, we can write r,q = rge?’? and r,q = rege*’?.

Using the given three-year spot rate, we get

1 1 1 {1 1 1 1 1}

= x + + - x
2 1+ T‘dd€402 1+ TddGQUQ 2 1+ ry

1 +70(0,3))F  (1+m0(0,2))2 27~

So,
2 x 1.045% 1 1 1 1 1
(1058 2 T4raedd  T4raed? "2 Trg
The above is a job for software. So, we enlist Mathematica.

2 % 1.0452 . 1 .
NSolve{ * 1.045 :( 05 + )—i— 05,:1:]

1.053 eVdr +1 €02z +1
The answers we obtain are
{{z — —0.947202}, {z — —0.713977}, {x — 0.0487493}}.

We discard the first two answers as they are not acceptable interest rates. Therefore, rqq =
0.0487, rg, = 0.0595, and r,, = 0.0727.

Example 2.3. A call on a bond
Using the above BDT tree, let us find the price of a two-year, at-the-money call option on
a three-year, zero-coupon bond redeemable for $1.

First, we figure out the strike of this call option. Today’s price of our bond can be
calculated using the spot price 7¢(0,3). We get

(14170(0,3))™ = (1.05) " = 0.8638.

In three years, the bond will be a one-year bond with one of the following three values,
depending on the interest rate at a particular node in the tree:

Puw = (1 4+ 74,) " = (1.0727)"! = 0.9322,

Py = (1 +1y9) " = (1.0727)7" = 0.9438,
= (1+7rg) "= (1.0727)"1 =0.9438,
Pd = (1+7rg) ' = (1.0727)"" = 0.9536.

So, the call’s payoffs are
Viw = 0.0684, V.4 =0.08, Vg, =0.08, V= 0.0898.

Finally, the call’s time—0 price is
1 1 1
VC(O) = (1 + 7"0(0,2))_2 X 5 X 5 X Vuu + Vud + 5 X ‘/dd

= 104572 x 0.5 x [0.5 x 0.0684 + 0.08 + 0.5 x 0.0898] = 0.0728.
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2.1.2. Verification. First, you enter the market data into the BDT tree - using the expressions
at the nodes of the generic BDT tree and plugging in the data - which depicts the 1-year
effective annual rates (see Figure 24.5). The tree will be different from the binomial trees we
have seen so far, e.g., Unlike a stock-price tree, the nodes are not necessarily “centered” on
the previous periods nodes; this is because the tree is matching the data by construction.
One can verify that the recipe for the values at the nodes given in the generic BDT tree is
indeed consistent with the data:
1. To verify that the tree matches the yield curve, one should compute the prices of
zero-coupon bonds with maturities of 1, 2, 3, and 4 years.
2. To verify the volatilities, one should compute the prices of 1—, 2—, and 3-year zero-
coupon bonds at year 1, and then compute the yield volatilities of those bonds.

You can read more on the verification steps in the textbook as a reading assignment.
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