# Topology in Dimension 4.5 - Session C Recent Results 

Ryan Budney

University of Victoria
rybu@uvic.ca

November 3, 2022

## Recent Results

Theorem: (Watanabe) $\pi_{1} \operatorname{Diff}\left(D^{4}\right)$ is non-trivial.

In this presentation $\operatorname{Diff}(M)$ denotes all diffeomorphisms of $M$ that restrict to the identity on $\partial M$.

## Recent Results

Theorem: $\quad(\mathrm{B}, \mathrm{G}) \pi_{0} \operatorname{Diff}\left(S^{1} \times D^{3}\right)$ is not finitely-generated.

## $B, G$ techniques

Construct essential family $\Omega^{n-j} S^{i} \rightarrow \operatorname{Diff}\left(\mathcal{B}_{i, j}^{n}\right)$, for any $1 \leq i \leq j<n$.
$\mathcal{B}_{i, j}^{n}$ is the boundary connect-sum of $S^{i} \times D^{n-i}$ and $S^{j} \times D^{n-j}$, called a barbell manifold.

$$
\mathcal{B}_{i, j}^{n} \equiv S^{i} \times D^{n-i} দ S^{j} \times D^{n-j}
$$



Notice the first non-trivial homotopy-group of $\Omega^{n-j} S^{i}$ is in dimension $i+j-n$, and it is $\mathbb{Z}$, provided $i+j \geq n$.

## B,G techniques

Strategy is to find suitable embedding $\mathcal{B}_{i, j}^{n} \rightarrow N^{n}$ and extend the family, giving a potentially essential map $\Omega^{n-j} S^{i} \rightarrow \operatorname{Diff}(N)$.

Restriction: The maps

$$
\operatorname{Diff}\left(\mathcal{B}_{i, j}^{n}\right) \rightarrow \operatorname{Diff}\left(S^{i} \times D^{n-i}\right) \quad \operatorname{Diff}\left(\mathcal{B}_{i, j}^{n}\right) \rightarrow \operatorname{Diff}\left(S^{j} \times D^{n-j}\right)
$$

obtained by filling the $j$-handle (or $i$-handle respectively) are null when restricted to our barbell family, thus suitable embeddings $\mathcal{B}_{i, j}^{n} \rightarrow N$ need to be 'linked'.


## Recent Results - High dimensions

In dimensions $n \geq 6$ we use the 'Hopf implantation' of the barbell $\mathcal{B}_{i, j}^{n}$ with $i+j=n$ in $S^{1} \times D^{n-1}$.


$$
\pi_{n-j} S^{i}=\pi_{i} S^{i} \equiv \mathbb{Z} \rightarrow \pi_{0} \operatorname{Diff}\left(S^{1} \times D^{n-1}\right)
$$

These recover* the Hatcher-Wagoner diffeomorphisms of $S^{1} \times D^{n-1}$.

## Recent Results - High dimensions

In dimension $n=5$ we use the 'simple linking' embedding of $\mathcal{B}_{2,2}^{5}$.


$$
\pi_{5-2} S^{2}=\pi_{3} S^{2} \equiv \mathbb{Z} \rightarrow \pi_{0} \operatorname{Diff}\left(S^{1} \times D^{4}\right)
$$

## Recent Results - High dimensions

In dimension $n=4$ we use the 'handcuff embeddings' of $\mathcal{B}_{2,2}^{4}$.


## Def'n of barbell diffeomorphism

Consider linearly embedded copies of $\mathbb{R}^{i}$ and $\mathbb{R}^{j}$ in $\mathbb{R}^{n}$, intersecting in a point.


Provided $n-i-j>0$ we can perturb-away the intersection. Provided $n-i-j>1$, all such perturbations are isotopic.

Def'n of barbell diffeomorphism - Paint Mixing ODE
Digression: $\Omega^{n-j} S^{i} \rightarrow \operatorname{Diff}\left(\mathcal{B}_{i, j}^{n}\right)$


## Def'n of barbell diffeomorphism - Paint Mixing ODE

Theorem: (Palais) If $M$ is a manifold, and $N$ a submanifold, the restriction map

$$
\operatorname{Diff}(M) \rightarrow \operatorname{Emb}(N, M)
$$

is a locally-trivial fibre-bundle.

That the map is a Serre fibration is due to Cerf. The proof is essentially the isotopy-extension theorem 'with parameters'.

The consequence we need is the homotopy long-exact sequence

$$
\cdots \rightarrow \pi_{k} \operatorname{Diff}(M) \rightarrow \pi_{k} \operatorname{Emb}(N, M) \rightarrow \pi_{k-1} \operatorname{Diff}(M \text { fix } N) \rightarrow \cdots
$$

specifically the red arrow.

## Def'n of barbell diffeomorphism

Consider our map $S^{n-i-j-1} \rightarrow \operatorname{Emb}\left(\mathbb{R}^{i} \sqcup \mathbb{R}^{j}, \mathbb{R}^{n}\right)$.

The induced element of $\pi_{n-i-j-2} \operatorname{Diff}\left(\mathbb{R}^{n}\right)$ is supported in a ball containing the original double-point.

Given that we can thicken the copies of $\mathbb{R}^{i}$ and $\mathbb{R}^{j}$, the diffeomorphism family can be chosen to be the identity on these thickened copies. Thus we have an element of

$$
\pi_{n-i-j-2} \operatorname{Diff}\left(\mathcal{B}_{n-i-1, n-j-1}^{n}\right)
$$

Let $i^{\prime}=n-i-1, j^{\prime}=n-j-1$ then this is an element of

$$
\pi_{i^{\prime}+j^{\prime}-n} \operatorname{Diff}\left(\mathcal{B}_{i^{\prime}, j^{\prime}}^{n}\right)
$$

This is the barbell diffeomorphism family, on the first non-trivial homotopy group of $\Omega^{n-j^{\prime}} S^{i^{\prime}}$.

