Topology in Dimension 4.5 – Session C Recent Results

Ryan Budney

University of Victoria rybu@uvic.ca

November 3, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Recent Results

Theorem: (Watanabe) $\pi_1 \text{Diff}(D^4)$ is non-trivial.

In this presentation Diff(M) denotes all diffeomorphisms of M that restrict to the identity on ∂M .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Recent Results

Theorem: (B,G) $\pi_0 \text{Diff}(S^1 \times D^3)$ is not finitely-generated.

B,G techniques

Construct essential family $\Omega^{n-j}S^i \to \text{Diff}(\mathcal{B}^n_{i,j})$, for any $1 \leq i \leq j < n$.

 $\mathcal{B}_{i,j}^n$ is the boundary connect-sum of $S^i \times D^{n-i}$ and $S^j \times D^{n-j}$, called a **barbell** manifold.

$$\mathcal{B}_{i,j}^n \equiv S^i \times D^{n-i} \natural S^j \times D^{n-j}$$

Notice the first non-trivial homotopy-group of $\Omega^{n-j}S^i$ is in dimension i+j-n, and it is \mathbb{Z} , provided $i+j \ge n$.

B,G techniques

Strategy is to find suitable embedding $\mathcal{B}_{i,j}^n \to N^n$ and extend the family, giving a potentially essential map $\Omega^{n-j}S^i \to \text{Diff}(N)$.

Restriction: The maps

 $\operatorname{Diff}(\mathcal{B}^n_{i,j}) \to \operatorname{Diff}(S^i \times D^{n-i}) \qquad \operatorname{Diff}(\mathcal{B}^n_{i,j}) \to \operatorname{Diff}(S^j \times D^{n-j})$

obtained by filling the *j*-handle (or *i*-handle respectively) are null when restricted to our barbell family, thus suitable embeddings $\mathcal{B}_{i,j}^n \to N$ need to be 'linked'.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Recent Results - High dimensions

In dimensions $n \ge 6$ we use the 'Hopf implantation' of the barbell $\mathcal{B}_{i,j}^n$ with i + j = n in $S^1 \times D^{n-1}$.

$$\pi_{n-j}S^i = \pi_i S^i \equiv \mathbb{Z} \to \pi_0 \text{Diff}(S^1 \times D^{n-1})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

These recover^{*} the Hatcher-Wagoner diffeomorphisms of $S^1 \times D^{n-1}$.

Recent Results - High dimensions

In dimension n = 5 we use the 'simple linking' embedding of $\mathcal{B}_{2,2}^5$.

$$\pi_{5-2}S^2 = \pi_3S^2 \equiv \mathbb{Z} \to \pi_0 \mathrm{Diff}(S^1 \times D^4)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Recent Results - High dimensions

In dimension n = 4 we use the 'handcuff embeddings' of $\mathcal{B}_{2,2}^4$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Def'n of barbell diffeomorphism

Consider linearly embedded copies of \mathbb{R}^i and \mathbb{R}^j in \mathbb{R}^n , intersecting in a point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Provided n - i - j > 0 we can perturb-away the intersection. Provided n - i - j > 1, all such perturbations are isotopic.

Def'n of barbell diffeomorphism - Paint Mixing ODE

Digression: $\Omega^{n-j}S^i \to \text{Diff}(\mathcal{B}_{i,j}^n)$

≣⊁ ≣

Def'n of barbell diffeomorphism - Paint Mixing ODE

Theorem: (Palais) If M is a manifold, and N a submanifold, the restriction map

 $\operatorname{Diff}(M) \to \operatorname{Emb}(N, M)$

is a locally-trivial fibre-bundle.

That the map is a Serre fibration is due to Cerf. The proof is essentially the isotopy-extension theorem 'with parameters'.

The consequence we need is the homotopy long-exact sequence

 $\cdots \rightarrow \pi_k \operatorname{Diff}(M) \rightarrow \pi_k \operatorname{Emb}(N, M) \rightarrow \pi_{k-1} \operatorname{Diff}(M \text{ fix } N) \rightarrow \cdots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

specifically the red arrow.

Def'n of barbell diffeomorphism

Consider our map $S^{n-i-j-1} \to \operatorname{Emb}(\mathbb{R}^i \sqcup \mathbb{R}^j, \mathbb{R}^n).$

The induced element of $\pi_{n-i-j-2}$ Diff(\mathbb{R}^n) is supported in a ball containing the original double-point.

Given that we can thicken the copies of \mathbb{R}^i and \mathbb{R}^j , the diffeomorphism family can be chosen to be the identity on these thickened copies. Thus we have an element of

$$\pi_{n-i-j-2} \text{Diff}(\mathcal{B}_{n-i-1,n-j-1}^n)$$

Let i' = n - i - 1, j' = n - j - 1 then this is an element of

$$\pi_{i'+j'-n} \operatorname{Diff}(\mathcal{B}^n_{i',j'})$$

This is the barbell diffeomorphism family, on the first non-trivial homotopy group of $\Omega^{n-j'}S^{j'}$.

Case i + j = n, $\pi_i S^i \to \pi_0 \text{Diff}(\mathcal{B}^n_{i,j})$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ⊇ ○ ○ ○ ○