Surfaces in 4-mids via banded unlink

- Surface $\sum \longrightarrow X^{4}$ closed $\xrightarrow{\text { clopped }} \xrightarrow{\text { diagrams }}$
- Surface $\sum \longrightarrow X^{4} \begin{gathered}\text { closed } \\ \text { smooth }\end{gathered}$
- analogue to Knot they

$$
K c M^{3}
$$

\sim What can $r_{1}\left(x^{4} \backslash \varepsilon\right)$ be?
~ Wat 4-mfeds arise fran sugary?
$\{$ Spheres $\} \rightarrow X^{4}$
\longleftrightarrow Cabordisms of 4 -mfols

Haw to describe?
Knot $K \subset S^{3} \sim$ project to S^{2}, break one strand near double points (laverstroal)

Surface $\Sigma \subset S^{4}$
Fox: Movie diagrams

Determinal
by $\partial\binom{$ minima }{ disks }

+ bonds $\binom{(-$ sind- }{ crit pts }
∞
(0)
(0)

Def

$$
(L, v)=\text { banded unlink diagram }
$$

min $L=$ unlink in $S^{3}\left(=h^{-1}\left(\frac{3}{2}\right)\right) \quad \begin{aligned} & h_{0}: S^{4} \rightarrow[0,4] \\ & h_{0}^{-1}(0)^{2}=h_{0}^{-1}(4)=p t\end{aligned}$ bards V = bands attached to $L \quad 0 \quad L_{0}^{h_{0}^{-1}}(t) \cong S^{3}$ $\max L_{v}=$ unlink in S^{3}

$$
\left.\left.\left.()_{L}^{L n} \sim\right)^{L}\right)^{L^{n_{0}}(E)=>}\right)
$$

$(L, v) \stackrel{\text { determines }}{\sim}$ Surface $\sum(l, v)$
Disks banded by Led (pushed into $h^{-1}\left[0, \frac{3}{2}\right]$)

$$
=U \underset{\text { bands }}{V} C h^{-1}\left(\frac{3}{2}\right)
$$

\checkmark Disks banded by L_{v} (pushed into $h^{-1}\left[\frac{3}{2}, 4\right]$)
Fox marie pictures
 $\left.\begin{array}{l}\text { shank } \\ \text { shibaya }\end{array}\right) \sum \stackrel{\text { isotopic }}{\sim} \sum(L, v)$

The Conj by Yoshikawa Pred by Suntan; Keanta-Kurdin)
If $\left(L_{1}, v_{1}\right)$ and $\left(L_{2}, v_{2}\right)$ ore diagrams for \sum, then $\left(L_{1}, v_{1}\right)$ related to $\left(l_{2}, v_{2}\right)$ by a seq. of

- cuplcap
- bonded swim
- bard slide
- isotopy

band swim

$h: X^{4} \rightarrow \mathbb{R}$ self-indexing Morse function
$\left(\text { index-i wit pts in } h^{-1}(i)\right)^{\begin{array}{c}\text { Say } \\ \text { I in od- } \\ 1 \text { ind }-4 \\ p^{t}\end{array}}$

Draw Kirby $\left\langle\right.$ of X^{4} using h

Def Kirby diagram is $L_{1} \cup L_{2} \subset S^{3} \rightarrow L_{1}$ unlink L_{2} each component links $S^{3}\left(L, L_{2}\right) L_{2}$ has integer framing so that $S_{0}^{3}\left(L, u L_{2}\right) \cong s^{\prime} \times s^{2}$ for some k

To draw \# \# $S^{\prime} \times S^{2}$ draw k"datted circles"

$\left(H S_{k}^{\prime} \times S^{2}=S^{3}\right.$ surged along the dotted circles; 0-surgery)
So x^{4} determined by disjoint dotted circles * framed circles $\subset S^{3}$

$\begin{array}{ll}1 & 4 \\ & \text { cell } \\ 0 & 3 \text { cells }\end{array}$
1 2-cell
no 1 -cells
1 0-cell

$\int_{\substack{1 \\ n_{0} \\ 4-c e l l \\ 3-c e l l}}^{4} \rightarrow$
no racell
no l-cell
1 o-cell

1 2-cell
1 1-cell
1 o-cell
Reforence Gampt - Stipsicz)

Now $\sum \subset X^{4}\binom{h: X^{4} \rightarrow I}{$ induces $K}$
\mid stope \sum so min of $\left.h\right|_{\varepsilon}$ in $h^{-1}\left[0, \frac{3}{2}\right]$, sables of h_{ε} in $h^{-1}\left(\frac{3}{2}\right)$, max of h_{ε} in $h^{\prime}\left[\frac{3}{2}, 4\right]$
Ex

$$
\sum_{1,3} c \mathbb{C} \mathbb{P}^{2}
$$

$\mathbb{C} \mathbb{P}^{2}$

$$
\begin{aligned}
& \left.h=\frac{7}{2}+3\right)^{2} \text { dish (max) } \\
& \left.h=\frac{5}{2}+1\right) S_{\text {unis }}^{3}(1) \cong S^{3} \\
& h=\frac{7}{4}
\end{aligned}
$$

$h=\varepsilon$ (II) S^{3}

Def Banded unlink diagram (K, L, v)

$$
K=\text { Kirby diagram } \underset{\text { for } X^{4} \text { indued }}{\text { sigh }}
$$

discant $\left\{L=\right.$ link $=$ unlink in $h^{-1}\left(\frac{3}{2}\right)$
tram $\{v$ = bands attached to L kirby cabs $L_{v}=$ unlink in $h^{\prime \prime}\left(\frac{5}{2}\right)$

$$
\begin{gathered}
L \subset h_{\sim}^{-1\left(\frac{3}{2}\right)} \\
\sim \\
L_{v}\left(L^{-1}\left(\frac{s}{2}\right)\right. \\
\sim D_{+1}^{2} \\
D_{L}
\end{gathered}
$$

(K, L, v) induces surface

$$
\sum(K, L, v) \subset X^{4}
$$

$\Sigma=$ disks bodd by L pushed into $h^{-1}\left[0, \frac{3}{2}\right]$
u bands v inh ${ }^{-1}\left(\frac{3}{2}\right)$
U disks bded by L_{L} pusked inte $h^{-1}\left(\frac{3}{2}, 4\right)$
 Say (K,L, $)$ digram $\frac{3}{2}$ if $\varepsilon \stackrel{150}{=} q(K, L, v)$

Thu (thughes-Kim-M)
$h: X^{4} \rightarrow I$ Morse inducing K $\sum G X^{4}$ smooth surface

- \sum has a diagram (K, L, v)
- Any two diagrams
$\left(K, L_{1}, v_{1}\right) \quad\left(K, L_{2}, v_{2}\right)$ for \sum are related by a seq of
- cup/capo "
-band slide " dd"
- band swim $\{$ waves
- isotopy
- 2-hanalle banal swim
- Lated circle slides

2-haralle band slide

$$
\left\|_{0}\right\|_{1} \|_{0} \beta_{a}^{m}
$$

2-handle band swim
dated circle slide

Pf Assume hila Morse
Pf $\sum 2$-dimension \rightarrow iso ape $\sum \cap h^{-1}\left[0, \frac{1}{2}\right]$ up and $\sum n^{-1}\left[\frac{5}{2}, 4\right]$ down (so $\sum c^{-1}\left(\frac{1}{2}, \frac{5}{2}\right)$)

Drag nola of minima of $\lim _{2}$ den to $h^{-1}\left(\frac{1}{2}\right)^{\left(b x l_{4} 1 \text {-holes }\right)^{h} / 2}$ ubhad of max of $h l_{\varepsilon}$ up to

$$
\begin{aligned}
& h l_{\varepsilon} \text { up to } \\
& \left(\begin{array}{c}
\text { abmemerles) }
\end{array} h^{-1}\left(\left[\frac{5}{2}, \frac{7}{2}\right]\right){ }^{2}-1\right.
\end{aligned}
$$

flatten inder-1 crit.
 t take to be at distinct heights $\frac{3}{2}<t,<\ldots<t_{1}<\frac{5}{2}$
So $h^{-1}\left(t_{i}\right) \cap \mathcal{L}=$ link with one band

project ($(*)$ bonels to $h^{-1}\left(\frac{3}{2}\right)$ to find $v(x+)$
(*) Problem: How to project band to $h^{-1}\left(\frac{3}{2}\right)$? Use - Vh but get stuck if band inteßeds ascending mfd
d index-' 2 cont pt of h
index -2 pt

Have to make choice of how to push band off ascereligy mfd

In projection to $h^{-1}\left(\frac{3}{2}\right)$, see

related by 2-rasle gavel side
$(* *)$ need to make choices So bonds embeebled in $L^{-1}\left(\frac{3}{2}\right) \frac{\text { disjoitly }}{\text { and miss }}$
(and do $h^{-1}\left(\frac{\sum}{2}\right) \cap \sum$ avid 12 circles)
projections
say v_{i} at height t_{i}
$y_{j} \Rightarrow v_{i}$ above v_{j}

$$
i>j>h, h^{\prime}
$$

(vi intersects

cescending anfd

2-haralle band
swim of index-2pt
index-2 $(h=2)$

Concluele:

- E has a diagram Proceelure above gives a diagrent Duell-defiried up to band mores +isatipy
Def
$\sum c x^{4}$ gereric
if. Efar from crit pls
- hle Moße
- heights of crits of hle all distinct

Lemma
If $\varepsilon_{0}, \Sigma_{1}$ generic and iskzpic thrash not greer gerosic generic surfaces

Hen $\sum_{\varepsilon_{0}}, \nabla_{\varepsilon_{1}}$ related by band moves + isotopy
Pf Step $1 \rightarrow$ put Σ_{0}, Σ_{1} into harizental-vertical position
\rightarrow Argue during ishopy, an keep ε_{E} in $h z$ position
"vertical" (alerg $\pm \nabla L$) istify doesn't chogel projectian to $h^{-1}\left(\frac{3}{2}\right)$
"harizantal" (preservingh $\left.\right|_{\varepsilon}$) isodopy Isotzees bards within cross-sedion

- Prajections intersect
\rightarrow bael slide/swim
- Band intersects ascereling wid ad index-2 crit $\leadsto 2$-handle band slide
- Baral intessects descerelig wid 1 index- 2 on' $\leadsto 2$-haralle band swim

If ror of the abare, projection cherges, circle stides (i, e. ishleg in $h^{-1}\left(\frac{3}{2}\right)$)
Nangereric surfaces (Keartan-Kunkin) goneric excet...
$A_{1}^{+} A_{1}^{+}$-sing two extrum e same hight
$A_{1}^{+} A_{1}^{-}$-sing extremum boad at sune height
$A_{1}^{-} A_{1}^{-}$-sing two bands e sameleigtt
$A_{2}-$ sing loed $x^{2}+y^{3}=0 \subset \mathbb{R}^{2}=R^{4}$

Lemme If Σ_{0}, Σ_{1} generic isataic thragh generic surfaces and 1 sing as above, then $D_{\text {a }} D_{\text {related }}$

Lemura (Keertan-Kurlin (moclifee)
$C S=\left\{\right.$ surfaces $\left.\hookrightarrow X^{4}\right\}$
Toplogy $=$ Whitior topology
$X=\left\{A_{1}^{ \pm} A_{1}^{ \pm}-A_{2}-\right.$ singularities $\}$
$\bar{X}=$ codim- 1 subspace of CS
$C S-\bar{X}=\left\{\begin{array}{c}\text { gereric surfaces } \\ \text { + surfaces intessectig }\end{array}\right\}$ crit pls of h
$\therefore \Sigma_{0}, \Sigma_{1}$ isotgpic (poth in the thascose C of \bar{X}) Can take isotaply thragh generic surfncest finitly many
$A_{1}^{ \pm} A_{1}^{ \pm} ; A_{2}$ - singulerities
$\sim D_{\varepsilon_{0}} P_{\varepsilon_{1}}$ related
q, by band maves.

Application
Several sphees in $\mathbb{\mathbb { P } ^ { 2 }}$ representing $\left[\mathbb{C} \mathbb{P}^{1}\right]$ con be slaun to be istapic to $\mathbb{C \mathbb { P } ^ { 1 }}$
$\varepsilon=S^{2} \subset S^{4} \quad \Sigma \# \mathbb{C} \mathbb{P}^{\prime}=U_{\varepsilon}$
Melvin
Dffee
iff Guck thist

$$
o \varepsilon \cong s^{4}
$$

eq. twist-spins

