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[30] Anthony Conway, Irving Dai, Maggie Miller, Z-disks in CP 2, arXiv: 2403.10080 [math.GT], Mar. 2024.

We classify locally flat disks in (CP2)◦ := CP2 \ B̊4 that have complements with infinite cyclic fundamental
group (i.e. “Z-disks” in (CP2)◦). Such a disk is always topologically isotopic rel. boundary to a disk obtained
by performing one positive crossing change to the boundary knot K (via blowing up with CP2) to obtain a
knot with trivial Alexander polynomial, which we then cap off with a Z-disk. The relevant crossing change
determines a loop in S3 \ ν(K) and we prove that the homology class of its lift to the infinite cyclic cover
of S3 \ ν(K) leads to a complete invariant of the obtained disk. We prove that this determines a bijection
between the set of rel. boundary topological isotopy classes of Z-disks with boundary K and a quotient of the
set of unitary units of the ring Z[t±]/(∆K). We deduce that a knot K with quadratic Alexander polynomial
bounds 0,1,2,4, or infinitely many Z-disks in (CP2)◦. This leads to the first examples of knots bounding
infinitely many topologically distinct disks whose exteriors have the same fundamental group and equivariant
intersection form. Finally we give several examples where these disks are realized smoothly.

[29] Mark Hughes, Seungwon Kim, Maggie Miller, Branched covers of twist-roll spun knots, arXiv: 2402.11706
[math.GT], Feb. 2024.

We prove that the double branched cover of a twist-roll spun knot in S4 is smoothly preserved when four
twists are added, and that the double branched cover of a twist-roll spun knot connected sum with a trivial
projective plane is preserved after two twists are added. As a consequence, we conclude that the members
of a family of homotopy CP2s constructed by Miyazawa are each diffeomorphic to CP2. As a consequence,
a family of involutions constructed my Miyazawa are all defined on CP2 are topologically but not smoothly
equivalent to complex conjugation.

[28] Andrew J. Lobb, Maggie Miller, Arunima Ray, Morphisms in Low Dimensions, Oberwolfach Reports
20(1):215–259, 2023.

This is a collection of extended abstracts written by the many speakers (including lightning talk speakers)
at MFO Workshop #2304, “Morphisms in Low Dimensions,” which I co-organized with Andrew Lobb and
Arunima Ray. This workshop brought together experts on interrelated topics in low-dimensional topology.
Our goal was to improve community understanding of recent developments in the field and to promote new
advances in the study of global properties of 4-manifolds.

[27] Mark Hughes, Seungwon Kim, Maggie Miller. Non-isotopic splitting spheres for a split link in S4,
arXiv:2307.12140 [math.GT], July 2023. Submitted.

In this paper, we extend the methods of [20] to prove that many 2-component split links in S4 have nonunique
splitting spheres. Specifically, we show that if L is a 2-component unlink and one component of L has genus
at least 4, then there exist two smooth splitting spheres S1, S2 for L that are not even isotopic through locally
flat embeddings in S4 \ ν(L). This contradicts intutiton from the classical dimension, since any two smooth
splitting spheres for a 2-component split link in S3 are smoothly isotopic in the link complement. In order to
prove this result, we actually study knotted 3-spheres in S5. We construct a nontrivial 3-sphere P in S5 so
that a standard Morse function on S5 restricts to a Morse function on P with exactly one local minimum and
exactly one local maximum. We then appropriately define the Bing double of P and obtain a nonsplit link of
two 3-spheres P1 ⊔ P2 in S5 so that a standard Morse function on S5 again restricts to each Pi as a Morse
function with exactly one local minimum and one local maximum. We then obtain a 2-component unlink in
S4 by considering the intersection of P1 ⊔ P2 with an equatorial S4 in S5. The simplicity of the restricted
height function on P1 ⊔P2 allows us to construct two splitting spheres for the surface link in S4, and the fact
that P1 ⊔ P2 is not split allows us to distinguish these spheres.
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[26] Paolo Aceto, Nickolas A. Castro, Maggie Miller, JungHwan Park, András Stipsicz, Slice obstructions from
genus bounds in definite 4-manifolds, arXiv:2303.10587 [math.GT], Mar. 2022. Submitted.

In Summer 2022, Dai–Kang–Mallick–Park–Stoffregen proved that the (2,1)-cable of the figure eight knot is
not smoothly slice, using an obstruction coming from involutive Floer homology. (They showed that if this
knot were slice, then a certain involution on a homology 3-sphere would extend over a restricted rational ball,
but obstructed such an extension by considering the involutive Floer complex on that homology 3-sphere.)
This was particularly interesting because the (2,1)-cable of the figure eight knot has been known not to be
ribbon since the 1990s by work of Casson–Gordon and Miyazaki. In this paper, we give an alternate proof
of the fact that the (2,1)-cable of the figure eight knot is not smoothly slice by using a slice surface for this
knot to construct a surface in 2CP2 and applying minimum-genus bounds due to Bryan in the 1990s. We
discuss this obstruction to sliceness for other knots and pose some specific problems about the minimal genus
function in 2CP2, whose positive answers would imply that various non-ribbon knots are also not slice.

[25] Maggie Miller, Explicitly describing fibered 3-manifolds through families of singularly fibered surfaces,
arXiv:2306.13081 [math.GT], Jan. 2023. To appear in Proceedings of Symposia in Pure Mathematics “Fron-
tiers in Geometry and Topology.”

In this paper, I give an explicit depiction of a fibration of the complement of the closure of a homogeneous
braid, understanding how each fiber intersects every cross-section of S3. This is a discussion of Stalling’s
classical observation that closures of homogeneous braids are fibered. While this is abstractly very easy to
prove (as the fibers are Murasugi sums of torus link fibers), and with modern techniques it is usually easy
to decide whether any given knot is fibered, I personally find it difficult to conceptualize the whole fibration
of a knot or link complement rather than a single fiber. I wrote this analysis while attempting to extend the
techniques of [3] to other 4-dimensional problems, as I felt it was necessary to understand a 3-dimensional
analogue more concretely in preparation.

[24] Michael Klug and Maggie Miller, Concordance of spheres in 4-manifolds with an immersed dual sphere,
arXiv:2211.07177 [math.GT], Nov. 2022. Submitted.

Based on work of Stong, we classify concordance of a pair of homotopic 2-spheres S0, S1 in a 4-manifold
when S0 has an immersed dual. When this dual has even Euler number, the obstruction to concordance is
just the Freedman–Quinn invariant, as proved by Freedman–Quinn (see also [5, 12]). When the dual has odd
Euler number, there is a secondary obstruction due to Stong. We give much exposition on the construction of
this secondary invariant (which we call stong, in contrast to Stong’s choice of “Kervaire–Milnor”) with many
figures and carefully discuss the examples of [12]. We intend to write another paper on the relationship between
stong and obstructing π3(W

5) classes from being realized by an embedded 3-sphere, for W a 5-manifold.

[23] Jason Joseph, Jeffrey Meier, Maggie Miller, Alexander Zupan, Bridge trisections and Seifert solids,
arXiv:2210.09669 [math.GT], Oct. 2022. To appear in Algebraic & Geometric Topology.

This paper is a continuation of the work in [21]. We give a version of Seifert’s algorithm for surfaces in S4

using triplane diagrams. We show how to explicitly produce a Heegaard diagram of a Seifert surface for any
2-knot S given a triplane diagram of S. We also give some classification results, showing that if a surface Σ
in S4 admits a b-bridge trisection with at least b− 1 disks in one sector, then Σ is unknotted. This answers
a question of the second and fourth co-authors from 2017.

[22] Kyle Hayden, Seungwon Kim, Maggie Miller, JungHwan Park, Isaac Sundberg, Seifert surfaces in the 4-ball ,
arXiv:2205.15283 [math.GT], May 2022. Submitted.

We construct pairs of same-genus Seifert surfaces in S3 with common boundary that do not become isotopic
in B4 when their interiors are pushed into B4. Almost all examples of same-genus but non-isotopic Seifert
surfaces for a knot in the literature do become isotopic when pushed into B4 (we explain this more concretely
in the introduction of the paper). The question of whether this is a general phenomenon was suggested by
Livingston in 1982; this paper answers that question. (Note that this question of Livingston was a low-
dimensional motivation for [20], which motivated my continued interest in the problem solved in this paper.)

We give examples where the surfaces are not topologically isotopic in B4, with obstruction the intersection
form of 2-fold covers of B4 branched along the surfaces. We also give examples that are topologically but
not smoothly isotopic, with smooth obstruction the associated cobordism maps on Khovanov homology (and
topological isotopy due to work of Conway and Powell).
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[21] Jason Joseph, Jeffrey Meier, Maggie Miller, Alexander Zupan, Bridge trisections and classical knotted surface
theory , Pacific Journal of Mathematics 319(2):343–369, 2022.

We adapt well-studied topics in knotted surface theory to the relatively new setting of bridge trisections. In
particular, we give a trisection-theoretic proof of the Whitney–Massey theorem (the classification of possible
Euler numbers of surfaces embedded in S4) and show how to compute the fundamental group and related
invariants of a surface from a triplane diagram.

[20] Mark C. Hughes, Seungwon Kim, and Maggie Miller, Knotted handlebodies in the 4-sphere and 5-ball ,
arXiv:2111.13255 [math.GT], Nov. 2021. To appear in Journal of the European Mathematical Society.

We show that for every g ≥ 2, there exist genus-g 3-dimensional solids H1 and H2 smoothly embedded in S4

so that the following are true.

(1) H1 and H2 have the same boundary.

(2) H1 and H2 are homeomorphic rel boundary.

(3) H1 and H2 are not isotopic rel boundary even through a locally flat (rather than smooth) isotopy, even
when their interiors are pushed into B5.

This is a strong resolution to the case g ≥ 2 of a conjecture of Budney–Gabai, who posited that for all
g ≥ 0 there exist genus-g solids H1 and H2 smoothly embedded in S4 that have the same boundary and
are homeomorphic rel boundary but not smoothly isotopic rel boundary in S4. Budney–Gabai proved this
was true for g = 0; we prove this is true in an extremely strong sense (since H1 and H2 do not become
isotopic when pushed into B5) for g ≥ 2. This last point is particularly surprising, since the following lower-
dimensional question remained open at the time this paper was written: Does there exist a knot K in S3

bounding two genus-g Seifert surfaces F1 and F2 so that F1 and F2 do not become (smoothly/locally flatly)
isotopic rel boundary when their interiors are pushed into B4? (Note: this question was answered in my later
joint work with Hayden, Kim, Park and Sundberg [22].)

[19] Mark C. Hughes, Seungwon Kim, and Maggie Miller, Band diagrams of immersed surfaces in 4-manifolds,
arXiv:2108.12794 [math.GT], Aug. 2021. Submitted.

We show that if Σ is a surface smoothly immersed in a 4-manifold X with isolated tranverse self-intersections,
then Σ can be described by a banded singular link inside a Kirby diagram for X. We show that if Σ′ is (iso-
topic/regularly homotopic/homotopic) to Σ, then the diagrams for Σ and Σ′ are related by a certain explicit
finite list of moves. We accomplish this by restricting an ambient Morse function on X to the complement
of Σ and investigating flow lines of this Morse function between boundary and interior critical points. As
an application, we show that a surface immersed in a trisected manifold can be put into trisection bridge
position uniquely up to standard moves. We also use these singular banded diagrams to reprove some classical
theorems about surfaces in 4-manifolds diagrammatically. This paper extends the work in [4].

[18] Kyle Hayden, Alexandra Kjuchukova, Siddhi Krishna, Maggie Miller, Mark Powell, and Nathan Sunukjian,
Brunnian exotic surface links in the 4-ball , arXiv:2106.13776 [math.GT], June 2021. To appear in Michigan
Mathematical Journal.

For any natural number n ≥ 2, we construct n-component surfaces Σ1,Σ2 smoothly, properly embedded
into B4 with the property that each Σi is Brunnian (meaning that if you delete any one component of Σi

you will get a surface that is smoothly isotopic rel. boundary to a Seifert surface for an unlink) and Σ1,Σ2

are an exotic pair (meaning that Σ1 and Σ2 are topologically isotopic rel. boundary but are not smoothly
equivalent).

This is an example of a very subtle form of exotic behavior. If you delete one component from each of Σ1

and Σ2, the resulting surfaces are smoothly isotopic rel. boundary. Thus, an operation transforming Σ1 into
Σ2 must somehow make use of every component of Σ1, rather than being a local operation. When n = 2,
we obstruct sliceness using an adjunction inequality or tools from knot Floer homology, in two different
constructions. We then give an argument via branched coverings to reduce exoticness of (n + 1)-component
surfaces to n-component surfaces.

The surfaces Σ1 and Σ2 can be chosen to consist only of disks. However, if we allow Σ1 and Σ2 to have
a positive-genus component, then we can extend the result to construct infinitely many surfaces {Σm}m∈N
which are pairwise exotic. This argument makes use of the tools from [13].
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[17] Maggie Miller and Burak Ozbagci, Lefschetz fibrations on nonorientable 4-manifolds, Pacific Journal of Math-
ematics 312(1):177–202, 2021.

We show that a nonorientable 4-dimensional manifold built without 3- or 4-handles admits a Lefschetz fibra-
tion over the disk. In the relative nonorientable seting, regular fibers of a Lefschetz fibration are nonorientable
surfaces with boundary. As a corollary, we obtain a 4-dimensional proof of the fact that every nonorientable
closed 3-manifold admits an open book decomposition, which was first proved by Berstein and Edmonds
using branched coverings. This paper was motivated by the work in [16].

[16] Maggie Miller and Patrick Naylor, Trisections of non-orientable 4-manifolds, arXiv:2010.07433 [math.GT],
Oct 2020. To appear in Michigan Mathematics Journal.

We show that several classical theorems are true in the non-orientable setting, including Waldausen’s theorem
(i.e. that Heegaard splittings of #gS

2 ∼× S1 are standard) and Laudenbach-Poenaru’s theorem (i.e. that any
diffeomorphism of ∂(♮kB

3 ∼×S1) extends to a diffeomorphism of ♮kB
3 ∼×S1). This implies that Kirby diagrams

and trisection diagrams of closed non-orientable 4-manifolds exist and are unique up to standard moves.
Without a non-orientable Laudenbach-Poenaru theorem, one must explicitly describe attaching regions of 4-
dimensional 3-handles in any surgery diagram, so this greatly improves our ability to describe non-orientable
manifolds. We also describe how to use trisections to take covers and to describe embedded surfaces (as in
the orientable case). In the case of Cappell-Shaneson homotopy 4-spheres (which are double covers of exotic
RP4s), this yields potentially nonstandard trisections of standard S4 along with trisections of potential exotic
S4s that may be easier to analyze via trisection diagrams than with previously existing methods.

[15] Maggie Miller and Alexander Zupan, Equivalent characterizations of handle-ribbon knots, arXiv:2005.11243
[math.GT], May 2020. To appear in Communications in Analysis and Geometry.

For the purpose of this paper, a knot is slice if it bounds a disk smoothly embedded into a homotopy 4-ball.
A derivative of a knot K is a link L sitting on a Seifert surface for K in a prescribed way; a knot K has
a derivative if and only if K is algebraically slice. We study handle-ribbon (i.e. strongly homotopy-ribbon)
knots, which bound slice disks whose complements admit handle decompositions with no 3-handles.

The stable Kauffman conjecture posits that a knot is slice if and only if it admits a slice derivative. We prove
that a knot is handle-ribbon if and only if it admits an R-link derivative; i.e. an n-component derivative L with
the property that zero-framed surgery on L yields #n(S1×S2). We also show that K bounds a handle-ribbon
disk D in a homotopy 4-ball B if and only if the 3-manifold obtained by zero-surgery on K admits a singular
fibration that extends over handlebodies in B \ ν(D), generalizing a classical theorem of Casson and Gordon
about fibered homotopy-ribbon knots to all handle-ribbon knots. The techniques in Section 5 of this paper
are very similar to those in [3]. Other sections in this paper rely on the theory of Morse 2-functions.

[14] Paolo Aceto, Jeffrey Meier, Allison N. Miller, Maggie Miller, JungHwan Park, and András I. Stipsicz, Branched
covers bounding rational homology balls, Algebraic & Geometric Topology. 21(7):3569–3599, 2021.

If a knot is slice, then all of its prime-powered branched covers bound rational homology balls. This is a
very strong restriction and has been used to obstruct sliceness for large families of knots (e.g. Lisca used
this property to understand sliceness of 2-bridge knots, and then Greene and Jabuka used this property to
understand sliceness of odd 3-stranded pretzels).

In this paper, we use twisted Alexander polynomials to prove that four knots (the 3-strand Turk’s head knots
with 14, 22, 34, and 46 crossings, respectively) are linearly independent in the knot concordance group, yet all
of their prime-powered branched covers bound rational homology balls. None of these knots are of the form (or
obviously concordant to a knot of the form) K#Kr, which is the previously known way of constructing such
knots (suggested by Chuck Livingston). Conjecturally, there should be an infinitely generated subgroup of
such concordance classes in the knot concordance group. Due to the difficulty of computing twisted Alexander
polynomials, a strategy for finding an infinite basis of such knots is unclear.

[13] András Juhász, Maggie Miller, and Ian Zemke, Transverse invariants and exotic surfaces in the 4-ball , Ge-
ometry & Topology 25(6):2963–3012, 2021.

We produce infinitely many genus-one surfaces properly embedded in B4 that are pairwise topologically
isotopic rel. boundary but not smoothly equivalent. The topological isotopy is constructive, although uses
Freedman’s theorem that knots with trivial Alexander polynomial are topologically slice. The obstruction
to smooth equivalence comes from the knot Floer concordance maps (or more precisely, maps on perturbed
stured Floer homology after suitably decorating the surfaces), which are sensitive to smooth topology.
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[12] Michael R. Klug and Maggie Miller, Concordance of surfaces and the Freedman-Quinn invariant , Journal of
Topology 14(2):560–586, 2021.

We extend a concordance version of the 4-dimensional light bulb theorem to the case where one lightbulb
has an immersed dual. That is, we prove that if R,R′ are homotopic π1-trivial (i.e. π1(R), π1(R

′) include
trivially into π1(X)) surfaces smoothly embedded in a 4-manifold X and G is a framed immersed 2-sphere
intersecting R geometrically once, then R and R′ are concordant modulo a condition on 2-torsion in π1(X).
This 2-torsion condition comes from the Freedman-Quinn invariant of a pair of based-homotopic 2-spheres in
a 4-manifold, which has recently been studied by Schneiderman and Teichner. (When R and R′ are 2-spheres,
this comes down to assuming the invariant for the pair is zero; when R and R′ are positive genus then we
have to say this in terms of a given homotopy from R to R′. See [24] for more details. In particular, it is
sufficient to assume that π1(X) has no 2-torsion. This generalizes [5].) For R and R′ 2-spheres, this follows
also from work of Freedman–Quinn.

We give explicit counterexamples when G is not framed, using Stong’s Kervaire-Milnor invariant (defined for
some pairs of based-homotopic spheres). This is the first construction of a pair of spheres with nontrivial
Stong (Kervaire-Milnor) invariant.

[11] Nickolas A. Castro, Gabriel Islambouli, Maggie Miller, and Maggy Tomova, The relative L-invariant of a
compact 4-manifold , Pacific Journal of Mathematics 315(2):305–346, 2021.

We introduce the relative L-invariant rL(X) of a smooth, orientable, compact 4-manifold X with boundary.
This trisection-theoretic invariant is motivated by the definition of the L-invariant for smooth, orientable,
closed 4-manifolds by Kirby and Thompson. We show that if X is a rational homology ball, then rL(X) = 0
if and only if X ∼= B4.

We also prove that any two relative trisections of a given 4-manifold X are related by interior stabilization,
relative stabilization, and the relative double twist, which we introduce in this paper as a trisection version of
one of Piergallini and Zuddas’s moves on open book decompositions. Previously, it was only known (by Gay
and Kirby) that relative trisections inducing equivalent open books on X are related by interior stabilizations.
This paper completes the uniqueness classification of relative trisections.

[10] Irving Dai and Maggie Miller, The 0-concordance monoid is infinitely generated , Proceedings of the American
Mathematical Society 151(8):3601–3609, 2023

We study the relation of 0-concordance on 2-knots in S4. This is a restricted type of concordance introduced
by Melvin to study the Gluck twist; if K and J are 0-concordant 2-knots, then their Gluck twists are
diffeomorphic. Equivalence classes of 2-knots under 0-concordance form the elements of a monoid M0, with
operation connected-sum. Sunukjian recently showed that M0 is infinite by showing that if K0 and K1 are

0-concordant and bound punctured rational homology spheres Y̊i, then certain d-invariants of Y0 and Y1 agree.
We extend his argument to show that in fact there is a spin rational homology cobordism from Y0 to Y1. By
appealing to results about spin rational homology cobordism (or integer homology cobordism, if adaptable),
we show that M0 is infinitely generated.

[9] Maggie Miller, The effect of link Dehn surgery on the Thurston norm, International Mathematics Research
Notices 2023(22):19069–19114. 2023.

Let L = L1 ⊔L2 be a 2-component link in S3 with nonzero linking number. Assume that X := S3 \ ν̊(L) has
nondegenerate Thurston norm. Let F be a norm-minimizing surface in X, and let F̂ be the closed surface
in S3

∂F (L) obtained from F by capping off each boundary component with a disk. Baker and Taylor showed
(in a more general setting) that there is a finite set of slopes S on ∂ν(L1) so that if ∂F ∩ L1 is not a slope

in S, then F̂ \ ν̊(L2) is norm-minimizing in S3
∂F∩L1

(L1). In contrast, I study the effect of simultaneously
Dehn-filling both boundary components of X.

In this paper, I show that there is a finite set E ⊂ H2(X, ∂X;Z) so that if [F ] is primitive and outside E, then

F̂ is norm-minimizing in S3
∂F (L). More generally, I show that when L is a multi-component link in a rational

homology sphere Y (with nonzero linking numbers and nondegenerate Thurston norm), a norm-minimizing
surface F remains norm-minimizing after Dehn surgery according to ∂F as long as [F ] lies outside of an
(n− 2)-dimensional set of rays in H2(Y \ ν(L), ∂;R).

The main argument of this paper involves constructing an explicit superset of E. I am very interested in
producing a smaller (or sharp) superset.
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[8] András Juhász, Maggie Miller, and Ian Zemke, Knot cobordisms, torsion, and Floer homology , Journal of
Topology 13(4):1701–1724, 2020.

Let K and J be knots in S3. We show that v-torsion Ordv in the F2[v]-modules HFK−(K),HFK−(J)
constrain the geometry of cobordisms between J and K. In particular, if there is a ribbon concordance from
J to K with n local minima, then Ordv(K) ≤ max{n,Ordv(J)}. When J is the unknot, then K is ribbon
and this yields Ordv(K) ≤ Fus(K), the fusion number of K. Applying simple algebraic properties of Ordv,
we conclude that for any knot L, Ordv(L) ≤ br(L), the bridge-index of L.

This is the first result in the literature that relates knot Floer homology to the bridge index of a knot.

[7] Peter Lambert-Cole and Maggie Miller, Trisections of 5-manifolds, 2019 MATRIX Annals, MATRIX Book
Ser., Springer, pp. 117–134, 2021.

Rubinstein and Tillmann constructed multisections of PL n-manifolds, which are decompositions of a PL n-
manifold into ⌈(n+ 1)/2⌉ elementary pieces with well-understood intersections. When n = 3, a multisection
is a Heegaard splitting; when n = 4, a multisection is a trisection. In this paper, we show how to construct
a multisection of a smooth 5-manifold from a handle decomposition. We show that any smooth cobordism
between trisected 4-manifolds can be multisected to agree with the trisections on its boundary.

Although not explicitly written in this paper, the argument also shows how to 4-sect any closed 5-manifold X.
That is, how to write X = Y1∪Y2∪Y3∪Y4 with the Yi’s intersecting only at their boundary and for i ̸= j ̸= k
we have that Yi is a 5D 1-handlebody, Yi ∩ Yj is a 4D 1-handlebody, Yi ∩ Yj ∩ Yk is a 3D 1-handlebody, and
Y1 ∩ Y2 ∩ Y3 ∩ Y4 is a closed surface. To see why this is true, just fix a handle decomposition of X and let

Y1 be the union of all 0- and 1-handles. Then view W := X \ Y̊1 as a cobordism from ∂Y1 to ∅ and use the
results of this paper to obtain a trisection (Y2, Y3, Y4) of W with the desired properties.

[6] Maggie Miller and Ian Zemke, Knot Floer homology and strongly homotopy-ribbon concordances, Mathemat-
ical Research Letters 28(3):849–861, 2021.

Ian Zemke previously showed that knot Floer homology can obstruct a ribbon concordance by proving that

if K is ribbon-concordant to J , then there is an injection ĤFK (K) ↪→ ĤFK(J) (as a summand). We extend
this argument to a generalization of ribbon concordance due to Cochran. (See listing [15].) Specifically, say
K is strongly homotopy-ribbon concordant to J if there is an annulus in a homotopy S3 × I between K
and J whose complement can be built from S3 \ ν̊(K) by attaching 4-dimensional 1- and 2-handles. Using
handle calculus, we show that this condition is sufficient to apply the previous techniques of Zemke and obtain

an injection ĤFK (K) ↪→ ĤFK(J) (again as a summand). In September 2020, Gujral and Levine proved a
version of this theorem for Khovanov homology.

[5] Maggie Miller, A Concordance Analogue of the 4D Light Bulb Theorem, International Mathematics Research
Notices 2021(4):2565–2587, 2021.

I consider a concordance analogue of David Gabai’s 4-dimensional light bulb theorem. Gabai’s light bulb
theorem says that when R and R′ are smoothly embedded, homotopic 2-spheres in a 4-manifold X and admit
a common transverse sphere (i.e. a 2-sphere in X with trivial normal bundle which meets R and R′ each
exactly once, transversely) then R and R′ are ambiently isotopic, modulo a condition on 2-torsion in π1(X).
In this paper, I weaken the hypothesis of the light bulb theorem at the cost of weakening the conclusion from
ambient isotopy to concordance. More precisely, I show that if R and R′ are homotopic and R has a transverse
sphere, then R and R′ are concordant, modulo the same condition on 2-torsion in π1(X). The proof relies
on part of the proof of the 4-dimensional light bulb theorem. Gabai shows that if R′ is in a certain normal
form, then R′ is isotopic to R. I show that in the weakened hypotheses, R′ is concordant to a 2-sphere in this
normal form.

[4] Mark C. Hughes, Seungwon Kim, and Maggie Miller, Isotopies of surfaces in 4-manifolds via banded unlink
diagrams, Geometry & Topology 24(3):1519–1569, 2020.

We show that banded unlink diagrams of a surface Σ in a 4-manifold X – combinatorial descriptions of the
restriction of a Morse function on X to Σ – are unique up to a finite set of explicit moves. As an application,
we show that bridge trisections of surfaces are unique up to a perturbation move, confirming a conjecture of
Meier and Zupan. This goes through the original proof of Meier and Zupan, who showed that bridge trisections
exist by constructing them from banded unlink diagrams. We also produce several interesting isotopies of
spheres in the generating homology class of CP2. We show that for many large families of 2-knots K known
to have Gluck twist diffeomorphic to S4, the 2-sphere K#CP1 ⊂ CP2 is isotopic to CP1. (It holds by work of
Melvin that (CP2,K) is diffeomorphic to (CP2,CP1).)
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[3] Maggie Miller, Extending fibrations on knot complements to ribbon disk complements, Geometry & Topology
25(3):1479–1550, 2021.

I show that ifK is a fibered ribbon knot in S3 bounding ribbon diskD ⊂ B4, then ifD satisfies a transversality
condition with respect to the fibration on S3 \ ν̊(K) then the fibration extends to a fibration of B4 \ ν̊(D) by
handlebodies. This is related to a question of Casson and Gordon, who showed that K bounds some disk E
in a homotopy 4-ball V so that V \ ν̊(E) is fibered by handlebodies, and so asked whether V can be taken to
be B4. When D has two local minima, the transversality condition is automatically satsified and we conclude
that B4 \ ν̊(D) is fibered. More generally, I construct a library of twenty simple circular Morse functions with
no interior critical points on small 4-manifolds and investigate when these movies can be concatenated to find
a circular Morse function with no critical points on a larger 4-manifold (via Cerf theory).

This was my PhD thesis.

[2] Seungwon Kim and Maggie Miller, Trisecting surface complements and Price twist surgery , Algebraic &
Geometric Topology 20(1):343–373, 2020.

We show how to produce a relative trisection description of the complement of any surface smoothly embedded
in a smooth 4-manifold. The main tool is a new move on the boundary of a relative trisection. Deleting a
bridge-trisected surface from a trisected 4-manifold will in general not yield a relatively trisected manifold,
but after performing this boundary move finitely many times, this complement will be relatively trisected.
As an application, we show how to produce a trisection description of the result of the Price twist, a certain
surgery operation on embedded RP2s which can yield exotic 4-manifolds.

[1] Maggie Miller, Concordances from the standard surface in S2 × S2, Journal of Knot Theory and its Ramifi-
cations 29(9):1950-57, 2019.

I use Gabai’s 4-dimensional light bulb theorem in S2 × S2 to construct concordances between homologous
surfaces in S2 × S2. The existence of these concordances follows from work of Sunukjian. Here we make use
of the lightbulb theorem to see the concordances explicitly. This is a short, diagrammatic paper.


