Basic terminology

DE:

\[x^2 = 4 \]

\[\rightarrow \text{ sol? } x = \pm 2 \quad (\text{can plug into eq.)} \]

Now: For future, can include operations like \(f', f'' \), ...

E.g.:

\[y'' = 4 \]
\[(y')^2 = 4 \]

\[\text{sol?} \quad \rightarrow \text{must be able to plug in and satisfy equation} \]
\[\downarrow \quad \checkmark \quad \text{Diff.} \]

<table>
<thead>
<tr>
<th>Linear</th>
<th>VS</th>
<th>Nonlinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4x = 17]</td>
<td>[{ \text{All var. only appear as } 1^{\text{st}} \text{ power}]</td>
<td>[4x^2 = 17]</td>
</tr>
<tr>
<td>[4x_1 + x_2 = 0]</td>
<td>[4x_1 \cdot x_2 = 0]</td>
<td>[4y'_1 = 17]</td>
</tr>
<tr>
<td>[4y'_1 + y = 0]</td>
<td>[4y \cdot y' = 0]</td>
<td>[4(y')^2 = 17]</td>
</tr>
</tbody>
</table>

Always have a concept to find sol.

Case by Case
A DE is called homogeneous if every term involves a derivative of \(y \) for \(y \).

General Linear hom. DE: \[a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_0(x)y = 0 \]

Interested in \(y \).

Example:

\[4y'' + 4y' + y = 0 \quad \text{Hom., linear w/ constant coeff.} \]

\[= 17 \quad \text{inhom.,} \quad \ldots \]

\[= y^{-1} \quad \text{(Hom.), nonlinear} \]

\[4xy'' + 4y' + 4 = 0 \quad \text{Hom., linear w/ non-const. coeff.} \]

Coeff. is a function of \(x \).

Mixed Cases: Math: \(\in \) "element of", "from the set"

\([a, b] \):

\[
\begin{array}{c}
\text{both ends included} \\
\[a \quad \longrightarrow \quad b \]
\end{array}
\]

\((a, b) \):

\[
\begin{array}{c}
\text{both ends excluded} \\
\[a \quad \longrightarrow \quad b \]
\end{array}
\]

\[\sum_{k=1}^{n} f_k = f_1 + f_2 + \ldots + f_n \]
Some DE

1) $y' = 0$

$\Rightarrow y = \text{const.}$

General solution: $y = c$ (arbitrary c)

If fixed by IV if we impose some

$y = a, y = b$ is a solution (same form as $y = a$ or $y = b$)

2) $y'' = 0 \Rightarrow y' = a \Rightarrow y = ax + b$

\[
\begin{align*}
 y = ax & \rightarrow y = ax + b \\
 y = b & \\
\end{align*}
\]

the general solution

3) $y' = 4y$

$(e^{4x})' = 4e^{4x}$

$cp(x) = 4e^{-4x}$

$cp(x) = -4e^{-4x} = -4p(x)$

$(y \cdot cp)' = y' \cdot cp + y \cdot cp' = y' \cdot cp - 4y \cdot cp = (y' - 4y) \cdot cp = 0$

Thus, $y \cdot cp = \text{const.}$ i.e., $y = \frac{\text{const.}}{cp} = \text{const.} \cdot e^{4x}$