M380D Algebra: Spring 2026

Day/Time: TTH 12:30-2pm; Location: PMA 12.166; Unique: 57050

Instructor
Mirela Ciperiani (mirela at math dot utexas dot edu); Office: PMA 12.164

Office Hours
Wednesday 10-11am

Text
Abstract Algebra, 3rd edition by Dummit and Foote, published by Wiley. We will cover material from chapters 13, 14, 18, 19.
The book should be available at the University Co-op.

Prerequisites
M380C. Contact me for more details if you are not sure whether this course is for you.

Teaching Assistant:
TBA; Office Hours: TBA .
Please contact TBA if you have any questions about the grading of the homework.

Midterm exam
Thursday, March 12 in class.

Final exam
Monday, May 4, 1pm-3pm in PMA 12.166.

Homework
The weekly homework assignments and the grades will be posted on Canvas by Thursday evening each week. The homework will be due on Wednesdays at 11pm (upload on Gradescope) and will be returned to you within a week. Sample solutions will be posted on Canvas on Thursdays. Late homework is not accepted but the lowest homework grade will be dropped.
Grading
Plus/minus grades will be assigned for the final grade in this course.

Homework 30%
Midterm 30%
Final exam 40%

Conflicts
If you have a conflict with any of the exams (for example, due to a religious holiday), you must notify the instructor by the 12-th class day.

Disabilities
Students with disabilities may request appropriate academic accommodations from the Division of Diversity and Community Engagement, Services for Students with Disabilities, 512-471-6259. If you plan on using accommodations, you need to notify the instructor by the 12-th class day.



Recommended reading

This schedule is tentative and will be modified as necessary.

Date
Reading
  Jan. 13, 15   13.1: Basic theory of field extensions
  Jan. 20, 22   13.2, 13.4: Algebraic extensions, Splitting fields and algebraic closures
  Jan. 27, 29   13.5, 13.6,: Separable & inseparable extensions, Finite fields, Cyclotomic fields,
  Feb. 3, 5   14.1, 14.2: Intro to Galois Theory and the Fundamental Theorem of Galois Theory
  Feb. 10, 12   14.2: Examples
  Feb. 17, 19   14.3, 14.4: Galois theory for finite fields, Composite extensions and Simple extensions
  Feb. 24, 26   14.5, 14.7: Cyclotomic extensions, Abelian extensions, Solvable extensions
  Mar. 3, 5   14.6, 14.8: Galois groups of polynomials, Computation of Galois groups over Q
  Mar. 10
Review
  Mar. 12
Midterm
  Mar. 17, 19
Spring Break
  Mar. 24, 26   14.9: Examples,Transcendental extensions, Inseparable extensions
  Mar. 31, Apr. 2   14.9, 18.1: Infinite Galois group, Introduction to the representation theory of finite groups,
                    Maschke's Theorem
  Apr. 7, 9   18:1, 18:3: Schur's Lemma, Character theory and Orthogonality relations
  Apr. 14, 16   19.1: Number of irreducible characters, Character tables, Lifted characters
  Apr. 21, 23   19.3: Restriction of characters, Induced characters, Frobenius reciprocity.