We start with:

- A fixed sample size n
- A confidence level C (e.g., 99\%, 95\%, 90\%)

Picture:
Find (from tables or software) the value z^{*} so that the percent of the area under the standard normal curve that is between $-z^{*}$ and z^{*} is C .

If X is $N(\mu, \sigma)$, then we know that the (sampling) distribution of sample means \bar{x} of SRS's of size n is
\qquad
Standardizing \bar{x}, we know that
has a standard
normal distribution.
So for percentage C of SRS's of size n ,
\qquad is between $-z^{*}$ and
z^{*}.

Therefore, for percentage C of SRS's of size $n, \bar{x}-\mu$ is between \qquad and
\qquad .

Consequently, for percentage C of SRS's of size n, μ is within distance \qquad of \bar{x}.

So our confidence interval for μ is ().
The margin of error is \qquad .

If X is not normal but n is large enough and X is close enough to normal that the sampling distribution of the sample means \bar{x} of SRS's of size n is approximately normal, then we can proceed as above to obtain an approximate level C confidence interval.

