CONFIDENCE INTERVALS (ASSUMING THE POPULATION STANDARD DEVIATION σ OF THE RANDOM VARIABLE X IS KNOWN)

We start with:

.

- A fixed sample size n
- A confidence level C (e.g., 99%, 95%, 90%)

Picture:

Find (from tables or software) the value z^* so that the percent of the area under the standard normal curve that is between $-z^*$ and z^* is C.

If X is N(μ , σ), then we know that the (sampling) distribution of sample means \bar{x} of SRS's of size n is

Standardizing \overline{x} , we know that has a standard normal distribution.

So for percentage C of SRS's of size n, _______ is between $-z^*$ and z^* .

Therefore, for percentage C of SRS's of size n, $\bar{x} - \mu$ is between _____ and

Consequently, for percentage C of SRS's of size n, μ is within distance _____ of \bar{x} .

So our confidence interval for μ is ($\ , \).$

The margin of error is _____.

If X is not normal but n is large enough and X is close enough to normal that the sampling distribution of the sample means \bar{x} of SRS's of size n is approximately normal, then we can proceed as above to obtain an *approximate* level C confidence interval.