PROPERTIES OF THE CORRELATION COEFFICIENT

You may have seen the covariance of two random variables in M362K:

$$
\operatorname{Cov}(X, Y)=E((X-E(X))(Y-E(Y)) .
$$

It is related to the variance by

$$
\operatorname{Var}(\mathrm{X}+\mathrm{Y})=\operatorname{Var}(\mathrm{X})+\operatorname{Var}(\mathrm{Y})+2 \operatorname{Cov}(\mathrm{X}, \mathrm{Y}) .
$$

(This is straightforward to establish from the definitions.) You might even have seen the correlation coefficient for random variables:

$$
\rho=\operatorname{Cov}(\mathrm{X}, \mathrm{Y}) /(\operatorname{Var}(\mathrm{X}) \operatorname{Var}(\mathrm{Y}))^{1 / 2}
$$

We can define the sample covariance of a collection $\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}$ of two variable data as

$$
\operatorname{cov}(\mathrm{x}, \mathrm{y})=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)\left(\mathrm{y}_{\mathrm{i}}-\bar{y}\right) .
$$

Notice that the sample correlation coefficient defined in the textbook can be expressed as

$$
\mathrm{r}=\operatorname{cov}(\mathrm{x}, \mathrm{y}) / \mathrm{s}_{\mathrm{x}} \mathrm{~s}_{\mathrm{y}} .
$$

Also notice that $\operatorname{cov}(a x, b y)=a b(\operatorname{cov}(x, y)) .($ Details left to the student!)
If we use $\operatorname{var}(x)$ to denote the sample variance, then we have

$$
\begin{aligned}
\operatorname{var}(\mathrm{x}+\mathrm{y})= & \frac{1}{n-1} \sum_{i=1}^{n}\left(\mathrm{x}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}}-\overline{x+y}\right)^{2} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left[\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)+\left(\mathrm{y}_{\mathrm{i}}-\bar{y}\right)\right]^{2}(\text { since } \overline{x+y}=\bar{x}+\bar{y}) \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left[\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)^{2}+2\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)\left(\mathrm{y}_{\mathrm{i}}-\bar{y}\right)+\left(\mathrm{y}_{\mathrm{i}}-\bar{y}\right)^{2}\right] \\
& =\operatorname{var}(\mathrm{x})+\operatorname{var}(\mathrm{y})+2 \operatorname{cov}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

Now apply this to $x / s_{x}+y / s_{y}$ instead of $x+y$:

$$
\begin{aligned}
\operatorname{var}\left(\mathrm{x} / \mathrm{s}_{\mathrm{x}}+\mathrm{y} / \mathrm{s}_{\mathrm{y}}\right) & =\operatorname{var}\left(\mathrm{x} / \mathrm{s}_{\mathrm{x}}\right)+\operatorname{var}\left(\mathrm{y} / \mathrm{s}_{\mathrm{y}}\right)+2 \operatorname{cov}\left(\mathrm{x} / \mathrm{s}_{\mathrm{x}}, \mathrm{y} / \mathrm{s}_{\mathrm{y}}\right) \\
& =\operatorname{var}(\mathrm{x}) / \mathrm{s}_{\mathrm{x}}{ }^{2}+\operatorname{var}(\mathrm{y}) / \mathrm{s}_{\mathrm{y}}{ }^{2}+2 \operatorname{cov}(\mathrm{x}, \mathrm{y}) / \mathrm{s}_{\mathrm{x}} \mathrm{~s}_{\mathrm{y}} \\
& =2+2 \mathrm{r} . \quad \text { (Why?) }
\end{aligned}
$$

Since the sample variance is always ≥ 0 (Why?), this implies that $\mathrm{r} \geq-1$.
Now if we had a case with $r=-1$, then we would have

$$
\operatorname{var}\left(\mathrm{x} / \mathrm{s}_{\mathrm{x}}+\mathrm{y} / \mathrm{s}_{\mathrm{y}}\right)=0,
$$

which implies (Why? [Hint: Look at the definition of variance.]) that for each i, $\mathrm{x}_{\mathrm{i}} / \mathrm{s}_{\mathrm{x}}+\mathrm{y}_{\mathrm{i}} / \mathrm{s}_{\mathrm{y}}=\overline{x / s_{x}+y / s_{y}}$, which we will call c (since it is a constant). Thus

$$
\begin{aligned}
& x_{i} / s_{x}+y_{i} / s_{y}=c, \quad i=1,2, \ldots, n, \text { so } \\
& y_{i}=s_{y}\left(c-x_{i} / s_{x}\right), i=1,2, \ldots, n .
\end{aligned}
$$

In other words, the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ all lie on the straight line with slope $-s_{y} / s_{x}$, which is negative.

Similarly, by considering $\operatorname{var}\left(\mathrm{x} / \mathrm{s}_{\mathrm{x}}+\mathrm{y} / \mathrm{s}_{\mathrm{y}}\right.$), we can show that $\mathrm{r} \leq 1$ and that if $\mathrm{r}=1$, then the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ all lie on the straight line with slope $s_{y} / s_{x}--$ which is positive. (Fill in details!)

