TRANSFORMATIONS TO OBTAIN EQUAL VARIANCE

General method for finding variance-stabilizing transformations: If Y has mean μ and variance σ^2 , and if U = f(Y), then by the first order Taylor approximation,

$$U \approx f(\mu) + (Y - \mu) f'(\mu),$$

SO

$$Var(U) \approx Var[f(\mu) + (Y - \mu) f'(\mu)]$$
$$= [f'(\mu)]^2 Var(Y - \mu)$$
$$= [f'(\mu)]^2 \sigma^2.$$

If we have an ANOVA situation in which the group variances σ_i^2 are a function of the group means μ_i , say

$$\sigma_i^2 = g(\mu_i)$$
,

then if we choose the function f so that

$$f'(y) = [g(y)]^{-1/2},$$

and take $U_i = f(Y_i)$ (where Y_i denotes the response variable), we will have

$$Var(U_i) \approx [f'(\mu_i)]^2 \sigma_i^2.$$

= $[g(\mu)]^{-1} g(\mu)] = 1.$

Thus such a transformation (or any scalar multiple of it) should give approximately equal variance.

Example: If $\sigma_i^2 \approx k(\mu_i)^q$, then $g(y) = ky^q$, so we want $f'(y) \propto y^{-\frac{q}{2}}$, giving

$$f(y) \propto \begin{cases} y^{1-\frac{q}{2}}, & \text{if } q \neq 2\\ \ln(y), & \text{if } q = 2 \end{cases}.$$

(If some of the y's are zero or negative, then we will need to add a suitable constant to y before taking a negative power or log.)

Often a suitable value of q can be determined empirically, using the following idea: If $\sigma_i^2 \approx k(\mu_i)^q$, then $\ln(\sigma_i^2) \approx \ln(k) + q \ln(\mu_i)$, so

- If a plot of $ln(\sigma_i^2)$ vs $ln(\mu_i)$ is close to a straight line, then a power transformation is a suitable choice.
- In this event, q can be estimated as the slope of a line approximately fitting this plot.

Cautions:

- Other model assumptions (especially normality) need to be checked before running the analysis, since the transformation might mess up other assumptions.
- Significance levels and confidence levels using transformed data will only be approximate, since the model has been changed *based on the data*.
- Interpretations need to be made in terms of the transformed units, or transformed back to the original units with care not to misinterpret.

Example: Battery data, with response "battery life" (rather than life per dollar).

Transformations based on theoretical considerations: Sometimes theoretical considerations point to a particular relationship between mean and variance, suggesting a particular transformation. Examples:

Type of	Mean/Variance	Type of	Comments
Distribution	relationship	Transformation	
Poisson	Variance = mean	Square root	1. Likely to occur with count data for
	(so $q = 1)$	(1-q/2=1/2)	rare events e.g., counts of
			accidents, flaws, or contaminating
			particles. 2. Simulations suggest that for
			sample size 15, the transformation
			does not substantially alter the
			probability of false rejection.
	Mean = mp, variance =	$\arcsin\left(\sqrt{\frac{y}{m}}\right)$	Likely to occur with count data
			such as number of seeds in a fixed
	mp(1-p)	(''')	number that germinate, number of
	111p(1-p)		culture plates that grow visible
			bacteria colonies.
			2. Simulations suggest that for m =
			10, transformation does not change
			probability of false rejection.
Exponential	Variance =	Log(y)	1. Likely to occur with certain kinds
	$mean^2 (q = 2)$	(1 - q/2 = 0)	of reaction times, waiting times, and
	_	_	financial data.
			2. Simulations suggest that with
			small sample sizes and differences in
			group means is large, transformation
			increase power, but in other cases can
			decrease power.