
 1 

ANALYSIS OF 

BALANCED FACTORIAL DESIGNS 

 

(Discussion applies to the Complete Model with any 

number of factors, but will be illustrated with the 

Three-Way Complete Model.) 

 

We can use Least Squares to get estimates of model 

parameters and contrasts. (Additional constraints 

must be added to estimate non-estimable parameters.)  

 

Example: The cell means are estimable. For three 

factors, the Least Squares estimates of the cell means 

are 

! 

y ijk• .  
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From the cell-means model and one-way analysis of 

variance, we have: 

 

• The error sum of squares ssE is the sum of 

squared deviations from the fits 

! 

y ijk•. 

 

Example: For 3 factors, ssE = 

! 

(yijkt " y ijk•)
2
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• ssE has associated degrees of freedom n – v. 

 

Example: For 3 factors (balanced design), ssE 

has abcr – abc = abc(r-1) degrees of freedom. 

 

• The mean square error msE is ssE divided by its 

degrees of freedom. 

 

Example: For 3 factors, msE = ssE/ abc(r-1). 

 

• msE is an estimate for the variance !2
.  

 

• The standard error of the residuals 

! 

yijkt " y ijk• is 

! 

ssE

n "1  
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Before doing inference,  

 

1. Decide which tests/comparisons we will do. 

 

2. Use fits and residuals to check the model 

assumptions of independent, normal errors with 

constant variance. 

 

Example: Pollution filter data 

 

1. Decide which tests/comparisons we will do and 

how type I error will be split up. 

 

 

 

 

 

2. Note: To get a column for treatment easily, use  

 

 100*SIZE + 10*TYPE + SIDE  
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Hypothesis Tests and Analysis of Variance Table 

(3-Way Models, Balanced Design): 

 

Submodels can be tested against larger models by F-

tests, with F-statistic obtained as a ratio of mean 

squares. 

 

The error sum of squares of a model is the sum of the 

squared deviations from the fits from that model. 

 

 Example: For three factors, the error sum of 

squares for a model is   

 

! 

(yijkt " ˆ y )
2

t

#
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#
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# ,  

 

where 

! 

ˆ y  is the fit for the model. 

 

 

Special case I: Since the fit for the complete model is 

! 

y ijk•, the error sum of squares for the complete model 

is ssE mentioned above. 
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Special case II: The total sum of squares is the error 

sum of squares for the model  

 

 yijkt = µ + "ijkt 

 

Since the fit for this model is the overall sample 

mean, the total sum of squares can be described as 

the sum of the squared deviations from the overall 

sample mean. 

 

 Example: For 3 factors,  

 

sstot = 

! 

(yijkt " y ••••)
2

t
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#  

The total sum of squares has n-1 associated degrees 

of freedom, where n = total number of observations 

(e.g., abcr for 3 factors). 
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Recall that for three factors, the null hypothesis for 

“no three-way interaction” is 

 

H0
ABC

:  

[(#$%)i+1,jk- (#$%)ijk] - [(#$%)i+1,qk- (#$%)iqk]  

 

- [(#$%)i+1,jr- (#$%)ijr] - [(#$%)i+1,qr- (#$%)iqr] 

 

= 0 for all i, j, k, q, r 

 

If we let ssE0
ABC

 denote the error sum of squares for 

the submodel where H0
ABC

 is true, then we define the 

sum of squares for three-way interaction to be 

 

 ssABC = ssE0
ABC

 – ssE 

 

It has associated degrees of freedom (a-1)(b-1)(c-1).  

 

Define the mean square error for ABC as 

 

msABC = ssABC/ (a-1)(b-1)(c-1).   

 

Then MSABC/MSE has an F distribution with  

(a-1)(b-1)(c-1) and n-v degrees of freedom. This 

gives us an F-test for H0
ABC

. 

 

Example: Pollution filter data. 
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Tests for Two-Way Interactions 

 
Analogously to the test for main effects in 2-way ANOVA, 

the tests for 2-way interaction in 3-way ANOVA have 

hypotheses: 

 

H0
BC: All ($%)ij*’s are equal 

 

 Ha
BC: At least two of the ($%)ij*’s are different, 

 

where the ($%)ij*’s are defined in a manner analogous to the 

#i*’s for two-way ANOVA, as the  ($%)ij’s plus averages 

over the higher interaction terms. 

 

Thus the test is whether or not the “levels” of BC 

interaction, averaged over the levels of the other factors, 

have the same average effect on the response.  
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Thus define  

 

ssE0
BC

 = the sum of  squares for the model 

 assuming H0
BC 

is true, 

 

and the sum of squares for BC   

 

ssBC = ssE0
BC

– ssE. 

 

Then ssBC has  (b-1)(c-1) degrees of freedom.  

 

Defining msBC = ssBC/(b-1)(c-1), we get F-statistic 

MSBC/MSE, with degrees of freedom (b-1)(c-1) and 

n-v. This gives us an F-test for H0
BC

. 

 

We proceed analogously to obtain hypothesis tests 

for the other two-way interactions and for “main 

effects” of A, B, and C. 
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In general (for balanced designs with complete 

model), the degrees of freedom for a sum of squares 

for an item in the ANOVA table is the product of one 

less than the number of levels for each factor 

involved in the item. 

 

Examples:  Sum of squares for Degrees of   

           freedom  

    A    a-1 

    AB    (a-1)(b-1) 

    BC    (b-1)(c-1) 

    ABC   (a-1)(b-1)(c-1) 

 

The total sum of squares partitions into (is the sum 

of) the error sum of squares plus the sums of squares 

for all items in the model.  

 

The degrees of freedom add correspondingly. For 

example, for the complete 3-way model, this is just 

the algebraic identity 

  

(a-1)(b-1)(c-1) + (a-1)(b-1) + (a-1)(c -1) + (b-1)(c-1)  

 

 + (a-1) + (b-1) + (c-1)+ abcr – abc  

 

= abcr – 1 
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Note: If we are dealing with a model other than the 

complete model, the error sum of squares for that 

model will have a different number of degrees of 

freedom. The degrees of freedom for error are usually 

most easily found by subtracting the other degrees of 

freedom from the total degrees of freedom. 

 

The mean square for an item is the sum of squares 

for that item divided by its degrees of freedom. 

 Example: msBC = ssBC/(b-1)(c-1) 

 

The F-statistic for an item is the mean square for the 

item divided by the mean square error, with 

corresponding degrees of freedom in the numerator in 

denominator. 
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Contrasts 

 

Contrasts are defined and estimated as in the cell 

means model.  

 

Various labels that are given to certain types of 

contrasts; see p. 199 for details.  

 

Contrasts can also be defined relative to submodels, 

in which case parameters not present in the submodel 

are omitted from the contrast.  

 

The various methods for simultaneous confidence 

intervals still apply.  

 

There is a modification that can be used for finding 

simultaneous confidence intervals for contrasts in the 

levels of a single factor: Replace v by the number of 

levels of the factor in question, and replace r by the 

number of observations on each level of the factor of 

interest. (See p. 205 for an example.) 

 

 

Example:  Continuing with the Pollution Filter Data, 

the main interest is in comparing levels of Type (the 

second factor).  
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Comments:  

 

• We can also do unbalanced ANOVA via GLM, 

similarly to the 2-way case. 

 

• Similar considerations/variations hold for “small 

experiments” ( i.e., one observation per cell.) 

 

• Sometimes transformations are helpful (e.g., to 

obtain constant variance or normality, or to 

remove interaction). 

 

• Other approaches:  

 

  Non-parametric  

   e.g.,  Kruskall-Wallis:  

    &2
 test based on rankings 

    Doesn’t require normality  

    Less powerful than ANOVA 

 

   Bayesian methods 

 

 

  


