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TRANSFORMATIONS TO OBTAIN 

 EQUAL VARIANCE 

 

General idea for finding variance-stabilizing 

transformations:  

 

Response Y  µ = E(Y)  !2 = Var(Y) 

  

U = f(Y) 

 

First order Taylor approximation for f around µ: 

  

 U " f(µ) + (Y - µ) f '(µ), 

 

so 

  Var(U) " Var[f(µ) + (Y - µ) f '(µ)]  

 

   = [f '(µ)]2Var(Y - µ) 

 

   = [f '(µ)]2!2. 
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Apply to ANOVA situation with unequal variances: 

  

If group variances !i
2 are a function of group 

means µi, say 

 

  !i
2 = g(µi), 

 

choose f so that  

 

  f '(y) = [g(y)]
-1/2

 

 

Take  

Ui = f(Yi)   

 

(Yi = response variable for ith
 group) 

 

Then 

  Var(Ui) "  [f '(µi)]
2!i

2 

 

   = [g(µi)]
-1 g(µi) = 1. 

 

Thus such a transformation (or any scalar multiple of 

it) should give transformed variable U with 

approximately equal variance. 
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Class of Examples: If !i
2 " k(µi)

q
 (k, q constants), 

then g(y) = kyq, so we want  

 

f '(y) #

! 

y
"
q

2 ,  

giving   

 

 

  

! 

f (y) " y
1#
q

2 , if q $ 2

ln( y), if q = 2

% 

& 
' 

( ' . 

 

Note: If some y's are zero or negative, then add a 

suitable constant to y before taking a negative power 

or log.  

 

Determining q empirically:  

 

Idea: If !i
2 " k(µi)

q, then ln(!i
2) " ln(k) + qln(µi), so  

 

• If a plot of ln(!i
2) vs ln(µi) is close to a straight 

line, then a power transformation is a suitable. 

 

• In this event, q can be estimated as the slope of a 

line approximately fitting this plot. 
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Cautions when transforming data:  

 

• Other model assumptions (especially normality) 

need to be checked before running the analysis, 

since the transformation might mess up other 

assumptions. 

 

• Significance levels and confidence levels using 

transformed data will only be approximate, if the 

model has been changed based on the data. 

 

• Interpretations need to be made in terms of the 

transformed units, or transformed back to the 

original units with care not to misinterpret.   

 

Example: Battery data, with response "battery life" 

(rather than life per dollar).   
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Transformations based on theoretical considerations:  

 

Sometimes theoretical considerations point to a 

particular relationship between mean and variance, 

suggesting a particular transformation.  

 

Examples: 

1. Poisson data 

 

• e.g., count data for rare events -- counts of 

accidents, flaws, contaminating particles. 

 

• Variance = mean  

 

• So q = 1, suggesting a square root transformation 

(1-q/2 = 1/2) 

 

• Simulations suggest that for sample size 15, the 

transformation does not substantially alter the 

probability of false rejection. 
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2. Binomial data  

 

• E.g., count data such as number of seeds in a 

fixed number that germinate, number of culture 

plates that grow visible bacteria colonies. 

 

• Mean = mp, variance =  mp(1-p) 

 

• arcsin

! 

y

m

" 

# 
$ $ 

% 

& 
' '  often suggested 

 

• Simulations suggest that for m = 10, 

transformation does not change probability of 

false rejection. 
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3. Exponential 

 

• E.g., certain kinds of reaction times, waiting 

times, and financial data 

 

• Variance = mean2  

 

• Thus q = 2, suggesting a log transformation (1 - 

q/2 = 0). 

 

• Simulations suggest that with small sample sizes 

when differences in group means are large, 

transformation increases power, but in other 

cases can decrease power. 

 

(For more information on simulations, see link from 

class home page.) 

 

 

 

 

 

 

 

 

 

 

 

 

 8 

MORE ON TRANSFORMATIONS 

 

Original situation:  

 

Response variable Yi for the ith treatment  group. We 

want to test 

 

 H0: µ1 = µ2
 = … = µt 

 

against 

 

  Ha: At least two of the µi's differ. 

 

 

If we have unequal variances, we might transform to 

get transformed response Ui = f(Yi) for the ith group.  

 

We will assume that f is monotone -- that is, it either 

preserves order or reverses order. 

 

This implies that f is invertible -- that is, we know 

variable Yi if we know Ui.   
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Letting µi
* = E(Ui), we test 

 

 H0*: µ1
* = µ2

* = … = µt
* 

 

against 

 

  Ha*: At least two of the µi
*'s differ. 

 

If the one-way ANOVA model is correct for the 

transformed variables, then: 

 

• Each Ui is normal with variance (!*)2.  

 

• Thus H0* implies that all Ui's have the same 

distribution. 

 

 

• This in turn implies that all Yi's have the same 

distribution, and hence the same mean.  

 

In other words:  

 

If the model is correct for the transformed 

variables, then H0* implies H0.  

 

Thus: if we do not reject H0* then it is reasonable 

to say that the data are consistent with H0. 
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Still assuming the model is correct, is the converse of 

the above conclusion true?  

 

Equivalently (assuming the model is correct): if we 

know H0* is false, can we conclude that H0 is false?  

 

This is true for log transformations. 

 

I have seen it asserted more generally, but I haven't 

found a proof for it.  

 

Note: It certainly is not the case that the mean of Yi 

transforms to the mean of Ui. 
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However: If a transformation is monotone (i.e., 

consistently preserves or consistently reverses order), 

then: 

 

• The median of Yi transforms to the median of Ui. 

 

• If Ui is normal, the median of Ui  is  the same as 

the mean of Ui.  

 

• Thus: If we reject H0*, we have evidence against 

the hypothesis: 

   

H0': The medians of the Yi's are all the same 

 

in favor of 

   

Ha': At least two of the medians of the Yi's differ. 

 

 

Comment: If a distribution is skewed, the median is 

often a better measure of center than the mean. 
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Confidence intervals with transformed variables 

 

• We can "backtransform" a confidence interval for 

the mean of a transformed variable to a CI for the 

median of the original variable. Usually the 

resulting confidence interval for the median is not 

symmetric about the median. 

 

Example: Battery life. 

 

• We can form confidence intervals for differences 

of means (or other contrasts) with the transformed 

data, but the interpretation needs to be made in 

terms of the transformed variables. This is not 

always feasible. 
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If we need confidence intervals for differences of 

means or other contrasts for the original response 

variable, we need to work with the original data. A 

variety of methods of analysis have been developed. 

These include: 

 

• Satterthwaite's approximation (Section 5.6.3) 

 

• General linear models (There are entire books and 

courses devoted to this topic.) 

 

• Weighted ANOVA can be used when the ratio of 

the variances in the different groups is known -- for 

example, when responses in the ith group are the 

average of ni measurements, but the variance of 

individual measurements is the same for all groups. 

 

• The Welch procedure for contrasts. This is a 

generalization of the "unpooled t-test' for 

comparing two means.  

 

• The Brown-Forsythe modified F-test. 
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Another possible problem with transforming data:  

 

Transformations can produce values for the response 

that don't make sense in the original context. 

 

Example: If we transform by square roots, then 

assuming the square root has a normal distribution 

isn't entirely accurate because the normal distribution 

could have negative values.  

 

Depending on the situation, this might or might 

not be a concern.  

 

• If, for example, the transformed variable has 

mean 20 and standard deviation 1, there is 

likely to be no problem.  

 

• However, if the interest in the original 

question is in rare events in the negative 

direction, then this "negative tail" scenario 

could make the analysis totally unhelpful. 
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Box-Cox Transformations 

 

This is a computerized method of finding possible 

transformations in the power family (including logs) 

to attempt to equalize variance and achieve 

normality. It is not implemented in Minitab (although 

there are macros available for Box-Cox there). We 

will not use this method in this course.  

 

   

 
 

 

  

 

  

 

 

 


