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ANALYSIS OF COVARIANCE (Chapter 9) 
 
Recall from the handout Randomized Complete Designs: 
 
Nuisance factor: A factor that is expected to have an effect on the response, but is not a 
factor of interest for the purpose of the experiment. 
 
Types of nuisance factors and how to deal with them in designing an experiment: 
 
Characteristics Examples How to treat 
Unknown, uncontrollable Experimenter bias, effect of order 

of treatments 
Randomization 

Known, uncontrollable, 
measurable 

IQ, weight, previous learning Analysis of 
Covariance 

Known, moderately 
controllable (by choosing 
rather than adjusting) 

Temperature, location, time, 
batch, particular machine or 
operator, age, gender, order, IQ, 
weight 

Blocking 

 
We will now discuss Analysis of Covariance, to deal with nuisance factors that can be 
measured, but cannot be controlled or cannot be measured in advance. (Measuring in 
advance would allow the possibility of either blocking or analysis of covariance.) 
 
Example: Recall the balloon experiment (p. 62. #12) from the February 15 assignment:  
Color of balloon was the only factor of interest; inflation time was the response. In part 
(d) of that problem, you were asked to plot the data for each color in the order in which it 
was collected. The following graph shows a plot of inflation time vs order: 
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There is a clear trend of decreasing inflation time as order increases. This is plausible: the 
experimenter probably got better at blowing up the balloons with practice, leading to the 
decrease. The decrease means that the observations are not independent, so the 
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independence assumption of ANOVA is not met, and hence the conclusions of the 
ANOVA analysis are not valid.  
 
However, since the dependence of time on order appears to be approximately linear (on 
average), and there is no reason to suspect that the dependence of time on order should 
differ for different colors, the data appear to fit a one-way analysis of covariance model: 
 
One-way Analysis of Covariance Model 
 The model assumptions are: 

• A completely randomized experiment is used to compare the effects of the 
levels of a single treatment factor T on the response variable Y. There is also a 
nuisance factor (covariate) X whose value can be measured before or during 
the experiment. 

• Yit = µ* + τi + βxit + εit  (1) 
  Note that this says that there is a linear relationship between E(Y) and x,  
  with the same slope for each level of the treatment factor. 

• εit ~ N(0, σ2) 
• εit’s mutually independent, 
• xit is not affected by the treatment 

where xit is the value of X for observation t of level i (i = 1, 2, … , v; t = 1, 2, … , ri) and 
µ*, τi, and  β are constants. 
 
It is more common to use the following form of the model equation: 
 Yit = µ + τi + β(xit  - 

! 

x ••
)+ εit  (2) 

This is obtained from equation (1) by letting µ = µ* + β

! 

x ••
. In (1), µ* + τi is the mean 

response when xit = 0; in (2), µ + τi is the mean response when xit =  

! 

x ••
. 

 
Extensions of the basic model:  

• The treatment factor can be as in the cell-means model for an experiment with 
several crossed factors. 

• Random and/or nested factors can be used; mixed models are possible. 
• More than one covariate can be included in the model. 
• Quadratic, etc. terms in x may be used to model more complex relationships 

between Y and X. 
• Interaction involving covariates can be modeled. 

Of course, the analysis gets more complex as the model becomes more complex. 
 
Fitting and model checking 
Least squares can be used to fit the model.  

Fitting with Minitab:  
• Use General Linear Model under ANOVA on the Stat menu. 
• Enter just the factor of interest under “Model” and the covariate under 

“Covariates” (You may have to click on “covariates” to get the box to enter the 
covariate in) 

• Save fits and residuals as with ANOVA 
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Residuals can then be used to check the model assumptions: 
• First plot residuals vs covariate, for each treatment level, using the same scale.  

o If any one of the plots appears non-linear, the model does not fit. A single plot 
marked by treatment level can sometimes, but not always, accomplish this; to 
make separate graphs in Minitab, you first need to unstuck by the treatment 
factor, then mark “same X and Y” under “multiple graphs” when making 
graphs. 

o If the model fits, each the plot for each level should have a random pattern, 
with no indication of non-linear trend or non-horizontal linear trend. 
(Remember that the model assumption is that the linearity relationship is 
between E(Y) and x, not between Y and x.) 

o A non-linear pattern indicates that the dependence on covariate is not linear; a 
linear but not horizontal pattern indicates that a model with an interaction term 
(to allow different slopes for different levels) is needed. (Note: The discussion 
in the book is not correct.) 

• If the model passes the above checks, proceed with other model checks as for 
ANOVA.  

  
Model checking plots for Balloon example, using the above ANCOVA model: 
 
Plots of residuals vs covariate for each color, on the same scale: 
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Eight points per plot don’t give definitive information, but there is no clear sign of 
non-linearity; all plots are consistent with a random pattern about the horizontal, as 
we would expect if the model fits. 
 
Plots of residuals vs color and vs fits: 
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Normal plot of residuals: 

p-value:   0.481
A-Squared: 0.338

Anderson-Darling Normality Test

N of data: 32
Std Dev: 2.42129
Average: 0.0000001
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Note: The Minitab ouput pointed out two observations with large standardized 
residuals: 
Obs.     TIME       Fit Stdev.Fit  Residual   St.Resid 
 11   28.8000   23.5510    0.9458    5.2490      2.17R  
 12   24.0000   19.1635    0.9458    4.8365      2.00R 
 
But neither of these is surprising in light of our sample size. 
 
Analysis:  
There are two hypothesis tests:  
 1) H0

T: All τi’s are equal 
   (i.e., the levels of T have the same effect, after accounting for X)  
 vs  
     Ha

T: At lest two  τi’s are different  
   (i.e., the levels of T have different effects, after accounting for X). 
 
 2) 

! 

H
0

" : β = 0 (no linear dependence on the covariate) vs  

! 

H
a

" : β ≠ 0 

 
Each test is developed by the familiar idea of comparing the error sum of squares 
under the full model with the error sum of squares under the reduced model obtained 
by assuming the null hypothesis is true. These differences are called the sum of 
squares for treatment and for slope – but since each of these sums of squares is 
calculated assuming the other parameters are fixed, we use the condition notation: 
 
 Sum of squares for treatment = ss(T|β) =  
      (error sum of squares under the reduced model assuming H0

T is true) – ssE 
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 Sum of squares for slope = ss(β|T) = 
      (error sum of squares under the reduced model assuming 

! 

H
0

"  is true) – ssE. 
 
The corresponding random variables are called SS(T|β) and SS(β|T). Each has an 
associated degrees of freedom. Mean squares are obtained by dividing by the degrees 
of freedom. The test statistics are: 
 
 For H0

T: MS(T|β)/MSE ~ F(1, n-v-1) 
 
 For 

! 

H
0

" : MS(β|T)/MSE ~ F(1, n-v-1) 
 
Balloon example: The Minitab output is 
 
Analysis of Variance for TIME     
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
ORDER       1    120.818    120.835    120.835   17.95  0.000 
COLOR       3    127.679    127.679     42.560    6.32  0.002 
Error      27    181.742    181.742      6.731 
Total      31    430.239   
 
The first F-test tells us: 
 
The second F-test tells us: 
 

One-way ANCOVA with interaction: 
 Recall that the one-way ANCOVA model given above assumes that there is a 
linear relationship between E(Y) and the covariate, with the same slope for each level of 
the treatment factor. By adding an interaction term, we can allow for different slopes for 
different values of the covariate. The model equation can be given as 
 
 Yit = µ + τi + βi(xit  - 

! 

x ••
)+ εit  (3) 

 
The model can be fit in Minitab by specifying model A|X (or A X A*X), still listing X as 
covariate. 
 Using this model for the balloon data gives output 
 
Source        DF     Seq SS     Adj SS     Adj MS       F      P 
COLOR          3    127.661     65.999     22.000    3.36  0.035 
ORDER          1    120.835    132.225    132.225   20.21  0.000 
COLOR*ORDER    3     24.710     24.710      8.237    1.26  0.311 
Error         24    157.032    157.032      6.543 
Total         31    430.239 
 
The third test statistic indicates no evidence of interaction – that is, no evidence of 
different slopes for different colors, as we suspected.  
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Treatment Contrasts and Confidence Intervals 
 
  A contrast 

! 

c
i
"
i

i

#  (where 

! 

c
i

i

"  = 0) is estimable with estimate 

! 

ci(y i• "
ˆ # x i•)

i

$ . 

See p. 286 of the textbook for details on estimated variance and confidence intervals. 
 
 Unfortunately, the Tukey, Dunnett, and Hsu methods for multiple comparisons do 
not work for ANCOVA. However, the Sheffe and Bonferroni methods still apply. (See p. 
287 for examples with the balloon data.) 
 

  
  
   
 
 


