INFERENCE FOR MULTIPLE LINEAR REGRESSION

Terminology: Similar to terminology for simple linear regression

- $\hat{y}_i = \hat{\underline{\eta}}^T \underline{u}_i$ (i^{th} fitted value or i^{th} fit) $\hat{e}_i = y_i \hat{y}_i$ (i^{th} residual) $RSS = RSS(\hat{\underline{\eta}}) = \sum (y_i \hat{y}_i)^2 = \sum \hat{e}_i^2$ (residual sum of squares)

Results similar to those in simple linear regression:

- $\hat{\eta}_i$ is an unbiased estimator of η_i .
- $\hat{\sigma}^2 = \frac{1}{n-k} RSS$ is an unbiased estimator of σ^2 .
- $\hat{\sigma}^2$ is a multiple of a χ^2 random variable with n-k degrees of freedom -- so we $\hat{\sigma}^2$ and RSS have df = n-k.

Note: In simple regression, k = 2.

Example: Haystacks

Additional Assumptions Needed for Inference:

- (3) Ylx is normally distributed (Recall that this will be the case if X, Y are multivariate normal.)
- (4) The y_i 's are independent observations from the $Y|\underline{x}_i$'s.

Consequences of Assumptions (1) - (4) for Inference for Coefficients:

- $Y|\underline{x} \sim N(\eta^T \underline{u}, \sigma^2)$
- There is a formula for s.e. $(\hat{\eta}_i)$. (We'll use software to calculate it.)
- $\frac{\hat{\eta}_j \eta_j}{s.e.(\hat{\eta}_j)} \sim t(n-k)$ for each j.

Example: Haystacks

Inference for Means:

In simple regression, we saw

$$\operatorname{Var}(\hat{E}(Y|X)) = \operatorname{Var}(\hat{E}(Y|X)|X_1, \dots, X_n) = \sigma^2 \left(\frac{1}{n} + \frac{(x - \overline{x})^2}{SXX}\right).$$

So

s.e
$$(\hat{E}(Y|x) = \hat{\sigma}\sqrt{\frac{1}{n} + \frac{(x - \overline{x})^2}{SXX}}$$

= $\hat{\sigma}$ times a function of x and the x_i's (but not the y_i's)

An analogous computation (best done by matrices -- see Section 7.9) in the multiple regression model gives

$$Var (\hat{E}(Y|\underline{x})) = Var(\hat{E}(Y|\underline{x})| \underline{x}_1, \dots, \underline{x}_n) = h\sigma^2,$$

where $h = h(\underline{u})$ (= $h(\underline{x})$ by abuse of notation) is a function of $\underline{u}_1, \underline{u}_2, \ldots, \underline{u}_n$, called the *leverage*. (The name will be explained later.)

In simple regression,

$$h(x) = \frac{1}{n} + \frac{\left(x - \overline{x}\right)^2}{SXX}$$

Note that $(x - \overline{x})^2$ (hence h(x)) is a (non-linear) measure of the distance from x to \overline{x} . Similarly, in multiple regression, $h(\underline{x})$ is a type of measure of the distance from \underline{u} to the *centroid*

$$\overline{\underline{u}} = \begin{bmatrix} 1 \\ \overline{u}_1 \\ \cdot \\ \cdot \\ \overline{u}_{k-1} \end{bmatrix},$$

(that is, it is a monotone function of $\sum (u_j - \overline{u}_j)^2$.) In particular:

The further \underline{u} is from $\underline{\overline{u}}$, the larger $Var(\hat{E}(Y|x))$ is, so the less precisely we can estimate E(Y|x) or y. (Thus an x-outlier could give a large h, and hence make inference less precise.)

Example: 1 predictor

Define:

s.e.
$$(\hat{E}(Y|\underline{x})) = \hat{\sigma} \sqrt{h(u)}$$

Summarizing:

- The larger the leverage, the larger s.e. $(\hat{E}(Y|x))$ is, so the less precisely we can estimate E(Y|x).
- The leverage depends just on the \underline{x}_i 's, not on the y_i 's.

Similarly to simple regression:

$$\frac{\hat{E}(Y \mid \underline{x}) - E(Y \mid \underline{x})}{s.e.(\hat{E}(Y \mid \underline{x}))} \sim t(n-k).$$

Thus we can do hypothesis tests and find confidence intervals for the conditional mean response $E(Y|\underline{x})$

Prediction: Results are similar to simple regression:

- Prediction error = $Y|\underline{x} \hat{E}(Y|\underline{x})$

- Var(Y|<u>x</u> \hat{E} (Y|<u>x</u>)) = σ^2 (1 + h(<u>u</u>)) = σ^2 + Var(E(Y|<u>x</u>)) Define s.e. (Y_{pred}|<u>x</u>) = $\hat{\sigma}\sqrt{1+h}$ $\frac{Y | \underline{x} \hat{E}(Y | \underline{x})}{se(y_{pred} | \underline{x})} \sim t(n-k)$, so we can form prediction intervals.

Example: Haystacks