2

LEAST SQUARES REGRESSION

Assumption: (Simple Linear Model, Version 1)

1. $E(Y|x) = \eta_0 + \eta_1 x$ (linear mean function)

[Picture]

Goal: To estimate η_0 and η_1 (and later σ^2) from data.

Data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n).$

Notation:

1

• The estimates of η_0 and η_1 will be denoted by $\hat{\eta}_0$ and $\hat{\eta}_1$, respectively. They are called the *ordinary least squares (OLS) estimates* of η_0 and η_1 .

•
$$\hat{E}(Y|x) = \hat{\eta}_0 + \hat{\eta}_1 x = \hat{y}$$

• The line $y = \hat{\eta}_0 + \hat{\eta}_1 x$ is called the *ordinary least squares (OLS) line*.

•
$$\hat{y}_i = \hat{\eta}_0 + \hat{\eta}_i X_i$$
 (i^{th} fitted value or i^{th} fit)

•
$$\hat{e}_i = y_i - \hat{y}_i$$
 (i^{th} residual)

Set-up:

- Consider lines $y = h_0 + h_1 x$.
- $d_i = y_i (h_0 + h_1 x_i)$
- $\hat{\eta}_0$ and $\hat{\eta}_1$ will be the values of h_0 and h_1 that minimize $\sum d_i^2$.

More Notation:

• RSS(h_0, h_1) = $\sum d_i^2$ (for Residual Sum of Squares).

• RSS = RSS($\hat{\eta}_0, \hat{\eta}_i$) = $\sum \hat{e_i}^2$ -- "the" Residual Sum of Squares (i.e., the minimal residual sum of squares)

3

Solving for $\hat{\eta}_0$ and $\hat{\eta}_1$:

- We want to minimize the function RSS(h_0 , h_1) = $\sum d_i^2 = \sum [y_i - (h_0 + h_1 x_i)]^2$
- Visually, there is no maximum. [See Demos]
- $RSS(h_0, h_1) \ge 0$
- Therefore if there is a critical point, minimum occurs there.

To find critical points:

$$\begin{split} \frac{\partial RSS}{\partial h_0}(h_0, h_1) &= \sum 2[y_i - (h_0 + h_1 x_i)](-1) \\ \frac{\partial RSS}{\partial h_1}(h_0, h_1) &= \sum 2[y_i - (h_0 + h_1 x_i)](-x_i) \end{split}$$

4

So $\hat{\eta}_0$, $\hat{\eta}_1$ must satisfy the *normal equations*

(i)
$$\frac{\partial RSS}{\partial h_0}(\hat{\eta}_0, \hat{\eta}_1) = \sum (-2)[y_i - (\hat{\eta}_0 + \hat{\eta}_1 x_i)] = 0$$

(ii)
$$\frac{\partial RSS}{\partial h_i}(\hat{\eta}_0, \hat{\eta}_i) = \sum (-2)[y_i - (\hat{\eta}_0 + \hat{\eta}_i x_i)]x_i = 0$$

Cancelling the -2's and recalling that $\hat{e}_i = y_i - \hat{y}_i$:

(i)'
$$\sum \hat{e}_i = 0$$

(ii)'
$$\sum \hat{e}_i X_i = 0$$

In words:

(i)'

(ii)'

Visually:

Note that (i)' implies $\overline{\hat{e}_i} = 0$ (sample mean of the \hat{e}_i 's is zero)

To solve the normal equations:

$$(i) \Rightarrow \sum y_i - \sum \hat{\eta}_0 - \hat{\eta}_1 \sum x_i = 0$$

$$\Rightarrow n \overline{y} - n \hat{\eta}_0 - \hat{\eta}_1 (n \overline{x}) = 0$$

$$\Rightarrow \overline{y} - \hat{\eta}_0 - \hat{\eta}_1 \overline{x} = 0$$

Consequences:

- Can solve for $\hat{\eta}_0$ once we find $\hat{\eta}_1$: $\hat{\eta}_0 = \overline{y} \hat{\eta}_1 \overline{x}$
- $\overline{y} = \hat{\eta}_0 + \hat{\eta}_1 \overline{x}$, which says:

Note analogies to bivariate normal mean line:

- $\alpha_{Y|X} = E(Y) \beta_{Y|X}E(X)$ (equation 4.14)
- (μ_{X}, μ_{Y}) lies on the (population) mean line (Problem 4.7)

(ii)
$$\Rightarrow$$
 (substituting $\hat{\eta}_0 = \overline{y} - \hat{\eta}_1 \overline{x}$)
$$\sum [y_i - (\overline{y} - \hat{\eta}_1 \overline{x} + \hat{\eta}_1 x_i)] x_i = 0$$

$$\Rightarrow \sum [(y_i - \overline{y}) - \hat{\eta}_1 (x_i - \overline{x})] x_i = 0$$

$$\Rightarrow \sum x_i (y_i - \overline{y}) - \hat{\eta}_1 \sum x_i (x_i - \overline{x})] = 0$$

$$\Rightarrow \hat{\eta}_1 = \frac{\sum x_i (y_i - \overline{y})}{\sum x_i (x_i - \overline{x})}$$

Notation: $SXX = \sum x_i(x_i - \overline{x}) \qquad SYY = \sum y_i(y_i - \overline{y})$ $SXY = \sum x_i(y_i - \overline{y})$

So for short: $\hat{\eta}_{l} = \frac{SXY}{SXX}$

8

Useful identities:

• SXX =
$$\sum (x_i - \overline{x})^2$$

• SXY =
$$\sum (x_i - \overline{x})(y_i - \overline{y})$$

• SXY =
$$\sum (x_i - \overline{x}) y_i$$

• SYY =
$$\sum (y_i - \overline{y})^2$$

Proof of (1):

$$\sum (x_{i} - \overline{x})^{2}$$

$$= \sum [x_{i} (x_{i} - \overline{x}) - \overline{x} (x_{i} - \overline{x})]$$

$$= \sum x_{i} (x_{i} - \overline{x}) - \overline{x} \sum (x_{i} - \overline{x}),$$

and

$$\sum (x_i - \overline{x}) = \sum x_i - n\overline{x}$$
$$= n\overline{x} - n\overline{x} = 0$$

(Try the others yourself!)

Summarize:

7

$$\hat{\eta}_{1} = \frac{SXY}{SXX}$$

$$\hat{\eta}_{0} = \overline{y} - \hat{\eta}_{1} \overline{x} = \overline{y} - \frac{SXY}{SXX} \overline{x}$$

Connection with Sample Correlation Coefficient

Recall: The sample correlation coefficient

$$r = r(x,y) = \hat{\rho}(x,y) = \frac{\hat{cov}(x,y)}{sd(x)sd(y)}$$

(Note: everything here calculated from sample.)

Note that:

$$\hat{cov}(x,y) = \frac{1}{n-1} \sum (x_i - \overline{x}) (y_i - \overline{y}) = \frac{1}{n-1} SXY$$
$$[sd(x)]^2 = \frac{1}{n-1} \sum (x_i - \overline{x})^2 = \frac{1}{n-1} SXX$$

$$[sd(y)]^2 = \frac{1}{n-1}SYY$$
 (similarly)

Therefore:

9

$$r^{2} = \frac{[c\hat{o}v(x,y)]^{2}}{[sd(x)]^{2}[sd(y)]^{2}}$$

$$= \frac{\left(\frac{1}{n-1}\right)^{2}(SXY)^{2}}{\left(\frac{1}{n-1}SXX\right)\left(\frac{1}{n-1}SYY\right)} = \frac{(SXY)^{2}}{(SXX)(SYY)}$$

Also,

$$r \frac{sd(y)}{sd(x)} = \frac{c\hat{o}v(x,y)}{sd(x)sd(y)} \frac{sd(y)}{sd(x)}$$
$$= \frac{c\hat{o}v(x,y)}{sd(x)^2}$$
$$= \frac{\frac{1}{n-1}SXY}{\frac{1}{n-1}SXX} = \frac{SXY}{SXX} = \hat{\eta}_1$$

For short:

$$\hat{\eta}_1 = r \frac{S_y}{S_x}$$

Recall and note analogy: For a bivariate normal distribution,

E(Y|X = x) =
$$\alpha_{Y|x} + \beta_{Y|X}x$$
 (equation 4.13)
where $\beta_{Y|X} = \rho \frac{\sigma_y}{\sigma}$

More on r: *Recall:*

[Picture]

Fits

$$\hat{y}_i = \hat{\eta}_0 + \hat{\eta}_1 X_i$$

<u>Residuals</u>

$$\hat{e}_i = \mathbf{y}_i - \hat{\mathbf{y}}_i
= \mathbf{y}_i - (\hat{\boldsymbol{\eta}}_0 + \hat{\boldsymbol{\eta}}_i \mathbf{x}_i)$$

RSS = RSS($\hat{\eta}_0, \hat{\eta}_l$) = $\sum \hat{e}_i^2$ -- "the" Residual Sum of Squares (i.e., the minimal residual sum of squares)

$$\hat{\boldsymbol{\eta}}_0 = \overline{y} - \hat{\boldsymbol{\eta}}_1 \overline{x}$$

i.e., the point (\bar{x}, \bar{y}) is on the least squares line.

Calculate:

$$RSS = \sum \hat{e}_{i}^{2} = \sum [y_{i} - (\hat{\eta}_{0} + \hat{\eta}_{l}x_{i})]^{2}$$

$$= \sum [y_{i} - (\overline{y} - \hat{\eta}_{l}\overline{x}) - \hat{\eta}_{l}x_{i}]^{2}$$

$$= \sum [(y_{i} - \overline{y}) - \hat{\eta}_{l}(x_{i} - \overline{x})]^{2}$$

$$= \sum [(y_{i} - \overline{y})^{2} - 2\hat{\eta}_{l}(x_{i} - \overline{x})(y_{i} - \overline{y}) + \hat{\eta}_{l}^{2}(x_{i} - \overline{x})^{2}]$$

$$= \sum (y_{i} - \overline{y})^{2} - 2\hat{\eta}_{l}\sum (x_{i} - \overline{x})(y_{i} - \overline{y}) + \hat{\eta}_{l}^{2}\sum (x_{i} - \overline{x})^{2}$$

$$= \sum (Y_{i} - \overline{y})^{2} - 2\hat{\eta}_{l}\sum (x_{i} - \overline{x})(y_{i} - \overline{y}) + \hat{\eta}_{l}^{2}\sum (x_{i} - \overline{x})^{2}$$

$$= \sum (Y_{i} - \overline{y})^{2} - 2\frac{SXY}{SXX}SXY + \left(\frac{SXY}{SXX}\right)^{2}SXX$$

$$= \sum (Y_{i} - \frac{(SXY)^{2}}{SXX}$$

$$= \sum (Y_{i} - \frac{(SXY)^{2}}{SXX})$$

Thus

$$1 - r^2 = \frac{RSS}{SYY},$$

SO

$$r^2 = 1 - \frac{RSS}{SYY} = \frac{SYY - RSS}{SYY}$$

Interpretation:

[Picture]

SYY = $\sum (y_i - \overline{y})^2$ is a measure of the total variability of the y_i 's from \overline{y} .

RSS = $\sum \hat{e}_i^2$ is a measure of the variability in y remaining *after* conditioning on x (i.e., after regressing on x)

So

SYY - RSS is a measure of the amount of variability of y *accounted for* by conditioning (i.e., regressing) on x.

Thus

 $r^2 = \frac{SYY - RSS}{SYY}$ is the proportion of the total variability in y accounted for by regressing on x.

Note: One can show (details left to the interested student) that SYY - RSS = $\sum (\hat{y}_i - \overline{y})^2$ and $\overline{\hat{y}}_i = \overline{y}$, so that in fact $r^2 = \frac{\hat{\text{var}}(\hat{y}_i)}{\hat{\text{var}}(y_i)}$, the proportion of the sample variance of y accounted for by regression on x.