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SELECTING TERMS (Supplement to Section 11.5) 
 
Transforming toward multivariate normality helped deal with the problem that deleting 
terms from the full model might result in a non-linear mean term or non-constant 
variance. 
 
Another possible problem: Dropping terms might introduce bias.  
 
First observe: When we drop terms and refit using least squares, the coefficient estimates 
may change. Example: The highway data. 
 
Explanatory Example: Suppose the correct model has mean function E(Y| x) =η0 + η1u1 + 
η2u2. Then 
 Y= η0 + η1u1 + η2u2 + ε. (So ε is a random variable with E(ε) = 0.) 
Suppose further that  
 u2 = 2u1 + δ, where δ is a random variable with E(δ) = 0. 
Then 
 Y =  η0 + η1u1 + η2(2u1 + δ) + ε 
  = η0 + (η1 + 2η2)u1 + (η2δ + ε) 
  = η0’ + η1’u1 + ε’ 
where η0’= η0, η1’= η1 + 2η2, and ε’ = η2δ + ε. Since  
 E(ε’) = E(η2δ + ε) = η2E(δ) + E(ε) = 0,  
the mean function for the submodel is 
 E(Y| x) = η0’ + η1’u1. 
Now suppose we fit both models by least squares, giving fits 

! 

ˆ y i  for the full model and 

! 

ˆ y i sub for the submodel. Recalling that 1) the least squares estimates are unbiased for the 
model used, 2) ui1 denotes the value of term u1 at observation i, etc., and 3)we are fixing  
the x-values, and hence the u-values, of the observations, we have that the expected 
values of the sampling distributions of 

! 

ˆ y i  and 

! 

ˆ y i sub are: 
 E(

! 

ˆ y i) = η0 + η1ui1 + η2ui2 =  η0 + η1ui1 + η2(2ui1 + δi) where δi is the value of δ for 
observation i, and  
 E(

! 

ˆ y i sub) = η0’ + η1’ui1 = η0 + (η1 + 2η2) ui1. 
Note that E(

! 

ˆ y i) has the additional term η2δi  that E(

! 

ˆ y i sub) doesn’t have. Thus, if the full 
model is the true model, then 

! 

ˆ y i sub is a biased estimator of E(Y| xi) 
 
Definition: The bias of an estimator is the difference between the expected value of the 
estimator and the parameter being estimated.  So for parameter E(Y | xi) and estimator 

! 

ˆ y i sub, 
 

bias (

! 

ˆ y i sub) = E(

! 

ˆ y i sub) - E(Y | xi) 
 

A counterbalancing consideration: Dropping terms might also reduce the variance of the 
coefficient estimators --  which is desirable! To see this, we use a formula (see Section 
10.1.5) for the sampling variance of the coefficient estimators: The variance of the 
coefficient estimator  

! 

ˆ " j  in a model is 



 2 

 

  Var(

! 

ˆ " j) = 

! 

" 2

SU jU j

1

1# R j

2
, 

 
where SUj Uj is defined like SXX,  and Rj

2 is the coefficient of multiple determination for 
the regression of uj on the other terms in the model. Notice that the first factor is 
independent of the other terms. Adding a term usually increases Rj

2; deleting one usually 
decreases Rj

2. Thus adding a term usually increases Var(

! 

ˆ " j); deleting a term usually 
decreases Var(

! 

ˆ " j) (i.e., gives a more precise estimate of ηj). Since 

! 

ˆ y i  is a linear 
combination of the 

! 

ˆ " j 's, the effect will be the same for Var(

! 

ˆ y i).  
 
Summarizing: Dropping terms might introduce bias (bad) but might reduce variance 
(good). Sometimes, having biased estimates is the lesser of two evils.  The following 
picture illustrates this: One estimator has distribution N(0, 1) and is unbiased; the other 
has distribution N(0.5, 0.1) and is hence biased but has smaller variance: 
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One way to address this problem is to evaluate the model by a measure that includes both 
bias and variance. This is the mean squared error: The expected value of the square of 
the error between the fitted value (for the submodel) and the true conditional mean at xi: 
 
  MSE (

! 

ˆ y i) = E([

! 

ˆ y i  - E(Y | xi)]2). 
 
Note:  

1. MSE (

! 

ˆ y i) is defined like the sampling variance of

! 

ˆ y i . 
2. Thus, if 

! 

ˆ y i  is an unbiased estimator of E(Y | xi), then MSE (

! 

ˆ y i) = _____________ 
3. Do not confuse with another use of MSE -- to denote RSS/df = Mean Square for 

Residuals (on regression ANOVA table) 
4. MSE is not a statistic – it involves the parameter E(Y | xi). 
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We would like MSE (

! 

ˆ y i) to be small.  To understand MSE better, we will examine, for 
fixed i, the variance of

! 

ˆ y i  - E(Y | xi): 
 
  Var(

! 

ˆ y i  - E(Y | xi))  
= E([

! 

ˆ y i  - E(Y | xi)]2) - [E(

! 

ˆ y i  -E(Y | xi))]2 
   = MSE(

! 

ˆ y i) - [E(

! 

ˆ y i) - E(Y | xi)]2 
   = MSE(

! 

ˆ y i) - [bias (

! 

ˆ y i)]
2. 

 
Also, since E(Y | xi) is constant,  
 
  Var(

! 

ˆ y i  - E(Y | xi)) = Var(

! 

ˆ y i). 
 
Thus, 
 
  MSE(

! 

ˆ y i) = Var(

! 

ˆ y i) + [bias (

! 

ˆ y i)]
2. 

 
So MSE really is a combined measure of variance and bias.  
 
Summarizing: Deleting a term typically decreases Var(

! 

ˆ y i) but increases  bias. So we 
want to play these effects off against each other by minimizing MSE (

! 

ˆ y i). But we need to 
do this minimization for all i's, so we consider the total mean squared error 
 

  J = 

! 

i=1

n

"  MSE (

! 

ˆ y i) 

   = 

! 

i=1

n

" {Var(

! 

ˆ y i) + [bias (

! 

ˆ y i)]
2}.  (*) 

 
We want this to be small. Since J involves the parameters E(Y | xi), we need to estimate 
it.  It works better to estimate the total normed mean squared error 
 
  γ (or Γ) = J/σ2      (**) 
 
(where σ2 is as usual the conditional variance of the full model). Remember that 

! 

ˆ y i  is the 
fitted value for the submodel, so γ depends on the submodel. To emphasize this, we will 
denote γ by γI, where I is the set of terms retained in the submodel. 
 
 If the submodel is unbiased , then 
 

  γI = (1/σ2) 

! 

i=1

n

" Var(

! 

ˆ y i), 

 
Now appropriate calculations show that  
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(1/σ2)

! 

i=1

n

" Var(

! 

ˆ y i) = kI ,    (***) 

the number of terms in I, whether or not the submodel is unbiased.  (Try doing the 
calculation  for kI = 2 -- i.e., when the submodel is a simple linear regression model, 
using the formula for Var(

! 

ˆ y i) in that case.) This implies that an unbiased model has γI= kI 
Thus having γI close to kI implies that the submodel has small bias. 
 
 Summarizing:  A good submodel has γI 
 
  (i) small (to get small total error) 
  (ii) near kI (to get small bias). 
 
 Putting together (*), (**), and (***) gives  
 

  γI = kI + (1/σ2) 

! 

i=1

n

" [bias (

! 

ˆ y i)]
2. 

 
 It turns out that  (n - kI)(

! 

ˆ " 
I

2

# ˆ " 
2 ) (where 

! 

ˆ " 
I

2 is the estimated conditional variance 

for the submodel) is an appropriate estimator for 

! 

i=1

n

" [bias (

! 

ˆ y i)]
2, so the statistic 

 

  CI = kI + 

! 

(n " k
I
)( ˆ # 

I

2 - ˆ # 2 )

ˆ # 
2

 

 
is an estimator of γI. CI is called Mallow's CI statistic . (It is sometimes called Cp, where  p 
= kI.) Some algebraic manipulation results in the alternate formulation 
 

  CI = kI + (n - kI)

! 

ˆ " 
I

2

ˆ " 
2

 - (n - kI) 

 

      = 

! 

RSS
I

ˆ " 
2

 + 2kI - n. 

 
Thus we can use Mallow's statistic to help identify  good candidates for submodels by 
looking for submodels where CI is both 
 
 (i) small (suggesting small total error) 
and 
 (ii) ≤ kI (suggesting small bias) 
 
Comments:  
 
1. Mallow's statistic is provided by many software packages in some model-selection 
routine. Arc gives it in both Forward selection and Backward elimination. Other software 
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(e.g., Minitab) may use different procedures for Forward and Backward 
selection/elimination, but give Mallow's statistic in another routine (e.g., Best Subsets). 
 
2. Since CI is a statistic, it will have sampling variability. It might happen, in particular, 
that  CI is negative, which would suggest small bias. It also might happen that CI is larger 
than kI even when the model is unbiased, but there is no way to distinguish this situation 
from a case where there is bias but CI happens to be less than γI.  
 
 


