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SUBMODELS (NESTED MODELS) AND ANALYSIS OF VARIANCE OF 
REGRESSION MODELS 

 
We will assume we have data (x1, y1), (x2, y2), … , (xn, yn) and make the usual simple 
linear model assumptions (linear mean function; constant conditional variance) 
independence and normality). 
 
Our model has 3 parameters: 

E(Y|x) = η0 + η1x (Two parameters: η0 and η1) 
Var(Y|x) = σ2 (One parameter: σ) 
 

We will call this the full model. Many hypothesis tests on coefficients can be 
reformulated as tests of the full model against a submodel – that is, a special case of the 
full model obtained by specifying certain of the parameters or certain relationships 
between parameters. 
 
Examples:  
a.  NH: η1 = 1 
 AH: η1 ≠ 1 
 
 What model does NH correspond to? How many parameters does it have? AH 
corresponds to the full model (with three parameters, including η1).  
 
 
b. NH: η1 = 0 
 AH: η1 ≠ 0 
 
 AH corresponds to the full model. What submodel does NH correspond to? How 
many parameters does it have? 
 
 
c. NH: η0 = 0 
 AH: η0 ≠ 0 
 
 AH corresponds to the full model. What submodel does NH correspond to? How 
many parameters does it have? 
 
Any specification of or relation among some of the parameters would give a submodel – 
and a conceivable hypothesis test. 
 
Examples: For the submodel given, what is the null hypothesis of the corresponding 
hypothesis test? 
d.  E(Y|x) = 2 + η1x  
 Var(Y|x) = σ2  
 
e.  E(Y|x) = η0 + η0x  
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 Var(Y|x) = σ2  
 
We have discussed how to "fit" the full model from data using least squares. We can also 
fit a submodel by least squares. 
 
Example 1: To fit the submodel E(Y|x) = 2 + η1x  

Var(Y|x) = σ2, 
consider lines y = 2 + h1x and minimize  

RSS(h1) = ∑ di
2 = ∑ [yi - (2 + h1xi)]2 

to get 

! 

ˆ " 
1
.       [Draw a picture.] 

 
Note: For this example, yi - (2 + h1xi) = (yi - 2) - h1xi, 
so fitting this model is equivalent to fitting the model  

E(Y|x) = η1x  
Var(Y|x) = σ2 

to the transformed data (x1, y1 - 2), (x2, y2 - 2), … , (xn, yn - 2) 
 
 

Example 2: For the submodel  E(Y|x) = η0  
Var(Y|x) = σ2, 

we minimize RSS(h0) = ∑ di
2 = ∑ (yi - h0)2  [Draw a picture.] 

a. Carry out details 
b. Result: h0 = 

! 

y  -- the same as the univariate estimate. 
c. Show that this is also the same as setting 

! 

ˆ " 
1
 = 0 in the least squares fit for the full 

model. 
Caution: The result is not always this nice, as the exercise below shows. 
 
Exercise: Try finding the least squares fit for the submodel 

  E(Y|x) = η1x  ("Regression through the origin") 
Var(Y|x) = σ2 

You should get a different formula for 

! 

ˆ " 
1
 from that obtained by setting 

! 

ˆ " 
0
 = 0 in the 

formula for the least squares fit for the full model. 
 
 
Generalizing: If we fit a submodel by Least Squares, we can define the residual sum of 
squares for the submodel: 
    RSSsub = ∑(yi -

! 

ˆ y i,sub )2 = ∑

! 

ˆ e 
i,sub

2  
 
where 

! 

ˆ y i,sub  = 

! 

ˆ E sub(Y|x) is the fitted value for the submodel and 

! 

ˆ e 
i,sub

 = yi -

! 

ˆ y i,sub  
 
Example: For the submodel in Example 2, 

! 

ˆ y i,sub  = 

! 

y  for each i, so 
 

RSSsub = ∑( yi -

! 

y )2 = SYY 
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General Properties: (Stated without proof; true for multiple regression as well as simple 
regression) 
• RSSsub is a multiple of a χ2 distribution, with 
• degrees of freedom dfsub = n - (# of coefficients estimated), and 

• 

! 

ˆ " 
sub

2  = 

! 

RSSsub

dfsub
 is an estimate of σ2 for the submodel. 

 
This will allow us to do hypothesis tests comparing a submodel with the full model. 
 
Another Perspective: 
 
We want a way to help decide whether the full model is significantly better than the full 
model. RSSsub - RSSfull can be considered a measure of how much better the full model is 
than the submodel. (Why is this difference always ≥ 0?). But RSSsub - RSSfull depends on 

the scale of the data, so 

! 

RSSsub " RSSfull

RSS full
 is a better measure. 

 
Example (to help build intuition): The submodel E(Y|x) = η0  

   Var(Y|x) = σ2 
 
Testing this model against the full model is equivalent to performing a hypothesis test 
with 

  NH: η1 = 0  
  AH: η1 ≠ 0. 
 
This hypothesis test uses the t-statistic 

 t = 

! 

ˆ " 
1

s.e.( ˆ " 
1
)

 = 

! 

SXY
SXX

ˆ " 
SXX

 ~ t(n-2), 

 
where here 

! 

ˆ "  = 

! 

ˆ " full  is the estimate of σ for the full model. Note that 
 

  t2 = 

! 

SXY( )
2

SXX( )
2

ˆ " 2
SXX

 = 

! 

SXY( )
2

ˆ " 
2
(SXX )

 

 
Recall:  

  RSSfull = SYY - 

! 

(SXY )2

SXX
  

  RSSsub = SYY  (in this particular example) 
 
Thus 
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  RSSsub - RSSfull = 

! 

(SXY )2

SXX
. 

so 
   

  t2 = 

! 

RSSsub " RSSfull

ˆ # 
2

 = 

! 

RSSsub " RSSfull

RSS full (n " 2)
  

   = 

! 

RSSsub " RSSfull

RSS full
 ÷ (n-2), 

which is just a constant times our earlier measure 

! 

RSSsub " RSSfull

RSS full
 of how much better the 

full model is than the submodel. 
 
F Distributions 
 
Recall: A t(k) random variable has the distribution of a random variable of the form 
 
 
     where  
 
 
Thus 
  t2 ~     
 
Also, 
  Z2 ~  
 
Definition: An F-distribution F(ν1, ν2) with ν1 degrees of freedom in the numerator and  
ν2 degrees of freedom in the denominator is the distribution of a random variable of the 
form  

  

! 

W "
1

U "
2

  where  W ~ χ2(ν1) 

     U ~ χ2(ν2) 
    and U and W are independent. 
 
Thus:  
  t(k)2 ~ F(1, k); 
 
i.e., the square of a t(k) random variable is an F(1,k) random variable – so any two-sided 
t-test could also be formulated as an F-test. 
 
In particular, the hypothesis test with hypotheses 
 

  NH: η1 = 0  
  AH: η1 ≠ 0 
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could be done using the F-statistic t2 instead of the t-statistic . 
 
Recall that in this example,  
 

   t2  = 

! 

RSSsub " RSSfull

RSS full
 ÷ (n-2),  

 
which we have seen does make sense as a measure of whether the full model 
(corresponding to AH) is better than the submodel (corresponding to NH). 
 
 
Example: Forbes data. 
 
 
Still another look at the F-statistic: 
 

 F = 

! 

RSSsub " RSSfull

RSS full (n " 2)
 

 

  = 

! 

RSSsub " RSSfull( ) dfsub " df full( )
RSSfull df full

, 

 
since dfsub – dffull = (n – 1) – (n – 2) = 1.  
 
i.e., F is the ratio of (the residual sum of squares for the submodel compared with the full 
model) and (the residual sum of squares for the full model) - - but with each divided by 
its degrees of freedom to "weight" them appropriately to get a tractable distribution. This 

is also just a constant times 

! 

RSSsub " RSSfull

RSS full
, which is a reasonable measure of how much 

better the full model is than the submodel in fitting the data. 
 
This illustrates the general case: Whenever we have a submodel (in multiple linear 
regression as well as simple linear regression),  
a. RSSsub (hence 

! 

ˆ " 
2

sub) will be a constant times a χ2 distribution, with degrees of freedom 
dfsub, which we then also refer to as the degrees of freedom of RSSsub and of 

! 

ˆ " 
2

sub. 
 

b. 

! 

RSSsub " RSSfull( ) dfsub " df full( )
ˆ # full

2
 = 

! 

RSSsub " RSSfull( ) dfsub " df full( )
RSSfull df full

  

 
~ F(dfsub - dffull , dffull). 

Rewriting the F-statistic, 
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! 

RSSsub " RSSfull( ) dfsub " df full( )
RSSfull df full

 = 

! 

RSSsub " RSS full

RSS full

# 

$ 
% % 

& 

' 
( ( 

df full

df fsub " df full

# 

$ 
% % 

& 

' 
( (  

 is just a constant multiple of  

! 

RSSsub " RSSfull

RSS full
, which is a reasonable measure of how 

much better the full model is than the submodel in fitting the data. 
 

 
Thus we can use an F statistic for the hypothesis test  

NH: Submodel  
AH: Full model 

 


