
 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES FOR SUMMER STATISTICS INSTITUTE COURSE 

 

 COMMON MISTAKES IN STATISTICS –  

SPOTTING THEM AND AVOIDING THEM 

 

  Part III: More Mistakes Involving Inference   

and Model Assumptions 

 

MAY 24 – 27, 2010 

 

Instructor: Martha K. Smith 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

CONTENTS OF PART III 

 
The File Drawer Problem (Publication Bias)   3 

 

Multiple Inference       6 

 The Problem        7 

 Joint Type I Error Rate      8 

 Multiple Inference with Confidence Intervals  9 

 What to Do About It      10 

 Bonferroni Method      11 

 False Discovery Rate      12 

 Subtleties and Controversies    14 

 

Data Snooping        16 

 Suggestions for Data Snooping 

  Professionally and Ethically   18 

 

Using an Inappropriate Method of Analysis   22 

 

Examples of Checking Model Assumptions Using 

 Well Established Facts or Theorems   26 

  

Using Plots to Check Model Assumptions   29 

 Suggestions and Guidelines for Checking 

  Specific Model Assumptions   30 

 

Specific Situations where Mistakes Involving 

Model Assumptions are Common    35 

 Intent to Treat (Comparisons with Dropouts)  35 

 Using a 2-Sample Test Comparing Means 

  When Cases Are Paired     37 

 Inappropriately Designating a Factor as 

  Fixed or Random      39 

 Analyzing Data without Regard to How 

  They were Collected     44 

 Pseudoreplication       46     

 



 3 

THE FILE DRAWER PROBLEM (PUBLICATION BIAS) 

Publication bias refers to the influence of the results of a study on 

whether or not the study is published. For example, the following 

might influence the publication decision: 

• Whether or not the results are statistically significant. 

• Whether or not the results are practically significant. 

• Whether or not the results agree with the expectations of the 

researcher or sponsor. 

 

Publication bias is also called the file drawer problem, especially 

when the nature of the bias is that studies which fail to reject the 

null hypothesis (i.e., that do not produce a statistically significant 

result) are less likely to be published than those that do produce a 

statistically significant result.  

 

Several studies (see Sterling et al 1995 and Song et al 2009) have 

found evidence of publication bias in the research literature.   

 

Failing to publish results that are not statistically significant can be 

particularly problematical.  

• Recall that if a significance level of 0.05 is set, then in 

repeated studies, about 5% of studies of a situation where the 

null hypothesis is true will falsely reject the null hypothesis. 

• Thus, if just (or even predominantly) the statistically 

significant studies are published, the published record 

misrepresents the true situation.  

• In particular, 

o Effects that are not real may appear to be supported by 

research. 

o Investigators may spend unnecessary effort conducting 

research on topics that have already been well researched 

but not reported. 
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Rosenthal (1979) proposed a method, based on probability 

calculations, for deciding whether or not a finding is "resistant to 

the file drawer threat."  

• This method has become known as the fail-safe file drawer 

(or FSFD) analysis.  

• It involves calculating a "fail-safe number" which is used to 

estimate whether or not the file-drawer problem is likely to 

be a problem for a particular review or meta-analysis. 

•  Scargle (2000) has criticized Rosenthal's method on the 

grounds that it fails to take into account the bias in the "file 

drawer" of unpublished studies, and thus can give misleading 

results.  

• Scargle urges efforts, such as research registries, to try to 

limit publication bias.  

• He also suggests that Bayesian methodologies may be best to 

deal with the file-drawer problem when combining different 

research results in a meta-analysis. 

• Research registries have been instituted in some areas. 

o For example, certain clinical trials are now required by 

law to be registered ClinicalTrials.gov. 
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Suggestions for researchers:  

• Carefully review the literature and any relevant research 

registries before you embark on new research. 

• Take the file drawer problem into account when writing a 

literature review. 

• These considerations are especially important when 

conducting a meta-analysis. 

 

Suggestion for reviewers, editors, etc: 

• Accept papers on the quality of the research and writing, not 

on the basis of whether or not the results are statistically 

significant or whether or not they are as expected.  

• If necessary, work to implement this as the policy of the 

journals you are affiliated with. 

 

Suggestions for consumers of research: 

• Do not let a single research result convince you of anything. 

• If you are reading a meta-analysis, check whether and how 

well the authors have taken the file-drawer problem into 

account.  
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MULTIPLE INFERENCE 

 

"Recognize that any frequentist statistical test has a random 

chance of indicating significance when it is not really present. 

Running multiple tests on the same data set at the same stage of an 

analysis increases the chance of obtaining at least one invalid 

result. Selecting the one "significant" result from a multiplicity of 

parallel tests poses a grave risk of an incorrect conclusion. Failure 

to disclose the full extent of tests and their results in such a case 

would be highly misleading." 

Professionalism Guideline 8, Ethical Guidelines for Statistical 

Practice, American Statistical Association, 1997 

 

Performing more than one statistical inference procedure on the 

same data set is called multiple inference, or joint inference, or 

simultaneous inference, or multiple testing, or multiple 

comparisons, or the problem of multiplicity. 

 

Performing multiple inference without adjusting the Type I error 

rate accordingly is a common error in research using statistics.  

• For example, A. M. Strasak et al (2007) examined all papers 

from 2004 issues of the New England Journal of Medicine 

and Nature Medicine and found that 32.3% of those from 

NEJM and 27.3% from Nature Medicine were "Missing 

discussion of the problem of multiple significance testing if 

occurred." 

• These two journals are considered the top journals (according 

to impact figure) in clinical science and in research and 

experimental medicine, respectively.  
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The Problem 

 

Recall: If you perform a hypothesis test using a certain significance 

level (we’ll use 0.05 for illustration), and if you obtain a p-value 

less than 0.05, then there are three possibilities: 

1. The model assumptions for the hypothesis test are not 

satisfied in the context of your data. 

2. The null hypothesis is false. 

3. Your sample happens to be one of the 5% of samples 

satisfying the appropriate model conditions for which the 

hypothesis test gives you a Type I error – i.e., you falsely 

reject the null hypothesis.  

Now suppose you are performing two hypothesis tests, using the 

same data for both. 

• Suppose that in fact all model assumptions are satisfied and 

both null hypotheses are true.  

• There is in general no reason to believe that the samples 

giving a Type I error for one test will also give a Type I error 

for the other test. 

• Simulation:  

•  So we need to consider the joint Type I error rate:  
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Joint Type I error rate: This is the probability that a randomly 

chosen sample (of the given size, satisfying the appropriate model 

assumptions) will give a Type I error for at least one of the 

hypothesis tests performed. 

The joint Type I error rate is also known as the overall Type I 

error rate, or joint significance level, or the simultaneous Type I 

error rate, or the family-wise error rate (FWER), or the 

experiment-wise error rate, etc.  

• The acronym FWER is becoming more and more common, 

so will be used in the sequel, often along with another name 

for the concept as well. 

 

An especially serious form of neglect of the problem of multiple 

inference is the one alluded to in the quote from the ASA ethics 

page:  

• Trying several tests and reporting just one significant test, 

without disclosing how many tests were performed or 

correcting the significance level to take into account the 

multiple inference. 

•  Don’t do it! 
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Multiple inference with confidence intervals 

 

The problem of multiple inference also occurs for confidence 

intervals.  

• In this case, we need to focus on the confidence level.  

• Recall: A 95% confidence interval is an interval obtained by 

using a procedure that, for 95% of all suitably random 

samples, of the given size from the random variable and 

population of interest, produces an interval containing the 

parameter we are estimating (assuming the model 

assumptions are satisfied).  

• In other words, the procedure does what we want (i.e. gives 

an interval containing the true value of the parameter) for 

95% of suitable samples.  

• If we are using confidence intervals to estimate two 

parameters, there is no reason to believe that the 95% of 

samples for which the procedure "works" for one parameter 

(i.e. gives an interval containing the true value of the 

parameter) will be the same as the 95% of samples for which 

the procedure "works" for the other parameter.  

• If we are calculating confidence intervals for more than one 

parameter, we can talk about the joint (or overall or 

simultaneous or family-wise or experiment-wise) 

confidence level.  

• For example, a group of confidence intervals (for different 

parameters) has an overall 95% confidence level (or 95% 

family-wise confidence level, etc.) if the intervals are 

calculated using a procedure which, for 95% of all suitably 

random samples, of the given size from the population of 

interest, produces for each parameter an interval containing 

that parameter (assuming the model assumptions are 

satisfied).   
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What to do about it 

 

Unfortunately, there is no simple formula to cover all cases:  

• Depending on the context, the samples giving Type I errors 

for two tests might be the same, they might have no overlap, 

or they could be somewhere in between.  

• Various techniques for bounding the FWER (joint Type I 

error rate) have been devised for various special 

circumstances. 

• Only two fairly general methods (Bonferroni and False 

Discovery Rate) will be discussed here. 

• For more information on other more specialized methods, 

see, e.g., Hochberg and Tamhane (1987) and Miller (1981) 
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Bonferroni method:  

 

Fairly basic probability calculations show that if the sum of the 

Type I error rates for different tests is less than !, then the overall 

(“family-wise”) Type I error rate (FWER) for the combined tests 

will be at most !.  

• So, for example, if you are performing five hypothesis tests 

and would like an FWER (overall significance level) of at 

most 0.05, then using significance level 0.01 for each test 

will give an FWER (overall significance level) of at most 

0.05.  

• Similarly, if you are finding confidence intervals for five 

parameters and want an overall confidence level of 95%, 

using the 99% confidence level for each confidence interval 

will give you overall confidence level at least 95%. (Think of 

confidence level as 1 - !.) 

The Bonferroni method can be a used as a fallback method when 

no other method is known to apply.  

• However, if a method that applies to the specific situation is 

available, it will often be better (less conservative) than the 

Bonferroni method; do both and compare. 
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The Bonferroni method is also useful for apportioning the overall 

Type I error between different types of inference. 

• For example, if three confidence intervals and two 

hypotheses are planned, and an overall Type I error rate of 

.05 is desired, then using 99% confidence intervals and 

individual significance rates .01 for the hypothesis tests will 

achieve this. 

• This can also be used to apportion Type I error rate between 

pre-planned inference (the inference planned as part of the 

design of the study) and “data-snooping” inferences 

(inferences based on looking at the data and noticing other 

things of interest; more below).  

• However, this apportioning should be done before analyzing 

the data.  

Whichever method is used, it is important to make the calculations 

based on the number of tests that have been done, not just the 

number that are reported. (See Data Snooping below for more 

discussion.) 
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False discovery rate:  

 

An alternative to bounding Type I error was introduced by 

Benjamini and Hochberg (1995): bounding the False Discovery 

Rate.  

The False Discovery Rate (FDR) of a group of tests is the 

expected value of the ratio of falsely rejected hypotheses to all 

rejected hypotheses. 

("Expected value" refers to the mean of a distribution. Here, the 

distribution is the sampling distribution of the ratio of falsely 

rejected hypotheses to all rejected hypotheses tested.)  

 

Note: 

• The family-wise error rate (FWER) focuses on the possibility 

of making any error among all the inferences performed. 

• The false discovery rate (FDR) tells you what proportion of 

the rejected null hypotheses are, on average, really true.  

• Bounding the FDR rather than the FWER may be a more 

reasonable choice when many inferences are performed, 

especially if there is little expectation of harm from falsely 

rejecting a null hypothesis.  

• Thus it is increasingly being adopted in areas such as micro-

array gene expression experiments or neuro-imaging.  

 

As with the FWER, there are various methods of actually bounding 

the false discovery rate. 

• References: Benjamini and Hochberg (1995), 

Benjamini and Yekutieli (2001), and Benjamini and 

Yekutieli (2005)  
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Subtleties and controversies 

  

Bounding the overall Type I error rate (FWER) will reduce the 

power of the tests, compared to using individual Type I error rates.  

• Some researchers use this as an argument against multiple 

inference procedures.  

• The counterargument is the argument for multiple inference 

procedures to begin with: Neglecting them will produce 

excessive numbers of false findings, so that the "power" as 

calculated from single tests is misleading. 

• Bounding the False Discovery Rate (FDR) will usually give 

higher power than bounding the overall Type I error rate 

(FWER). 

 

Consequently, it is important to consider the particular 

circumstances, as in considering both Type I and Type II errors in 

deciding significance levels.  

• In particular, it is important to consider the consequences of 

each type of error in the context of the particular research.  
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Examples: 

1. A research lab is using hypothesis tests to screen genes for 

possible candidates that may contribute to certain diseases.  

• Each gene identified as a possible candidate will undergo 

further testing.  

• If the results of the initial screening are not to be published 

except in conjunction with the results of the secondary 

testing, and if the secondary screening is inexpensive 

enough that many second level tests can be run, then the 

researchers could reasonably decide to ignore overall Type 

I error in the initial screening tests, since there would be 

no harm or excessive expense in having a high Type I 

error rate.  

• However, if the secondary tests were expensive, the 

researchers would reasonably decide to bound either 

family-wise Type I error rate or False Discovery Rate.  

 

2. Consider a variation of the situation in Example 1:  

• The researchers are using hypothesis tests to screen genes 

as in Example 1, but plan to publish the results of the 

screening without doing secondary testing of the 

candidates identified.  

• In this situation, ethical considerations would warrant 

bounding either the FWER or the FDR -- and taking pains 

to emphasize in the published report that these results are 

just of a preliminary screening for possible candidates, and 

that these preliminary findings need to be confirmed by 

further testing.  
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DATA SNOOPING 

 

Data snooping refers to statistical inference that the researcher 

decides to perform after looking at the data (as contrasted with 

pre-planned inference, which the researcher plans before looking 

at the data).  

 

Data snooping can be done: 

• professionally and ethically, or  

• misleadingly and unethically, or  

• misleadingly out of ignorance.  

Misleading data snooping out of ignorance is a common error in 

using statistics. The problems with data snooping are essentially 

the problems of multiple inference.  

• One way in which researchers unintentionally obtain 

misleading results by data snooping is in failing to account 

for all of the data snooping they engage in.  

• In particular, in accounting for Type I error when data 

snooping, you need to count not just the actual hypothesis 

tests performed, but also all comparisons looked at when 

deciding which post hoc (i.e., not pre-planned) hypothesis 

tests to try. 
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Example:  A group of researchers plans to compare three dosages 

of a drug in a clinical trial.   

• There is no pre-planned intent to compare effects broken 

down by sex, but the sex of the subjects is recorded.  

• The researchers have decided to have an overall Type I 

error rate of 0.05, allowing 0.03 for the pre-planned 

inferences and 0.02 for any data snooping they might 

decide to do.  

• The pre-planned comparison shows no statistically 

significant difference between the three dosages when the 

data are not broken down by sex.  

• However, since the sex of the patients is known, the 

researchers decide to look at the outcomes broken down 

by combination of sex and dosage, notice that the results 

for women in the high-dosage group look much better than 

the results for the men in the low dosage group, and 

perform a hypothesis test to check that out.  

• In accounting for Type I error, the researchers need to 

take the number of data-snooping inferences performed as 

15, not one.  

o The reason is that they have looked at fifteen 

comparisons:  there are 3"2 = 6 dosage"sex 

combinations, and hence (6"5)/2 = 15 pairs 

of dosage"sex combinations.  

o Thus the significance level for the post hoc test 

should not be 0.02, but (if the Bonferroni method is 

used) 0.02/15.  
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Suggestions for data snooping professionally and ethically 

I. Educate yourself on the limitations of statistical inference: 

Model assumptions, the problems of Types I and II errors, power, 

and multiple inference, including the "hidden comparisons" that 

may be involved in data snooping (as in the above example). 

 

 II. Plan your study to take into account the problems involving 

model assumptions, Types I and II errors, power, and multiple 

inference. Some specifics to consider:  

a. If you will be gathering data, decide before gathering the 

data: 

• The questions you are trying to answer. 

• How you will gather the data and the inference procedures 

you intend to use to help answer your questions.  

o These need to be planned together, to maximize the 

chances that the data will fit the model assumptions 

of the inference procedures.  

• Whether or not you will engage in data snooping. 

• The type I error rate (or false discovery rate) and power 

that would be appropriate (considering the consequences 

of these types of errors in the situation you are studying).  

o Be sure to allow some portion of Type I error for any 

data snooping you think you might do. 

Then do a power analysis to see what sample size is needed to 

meet these criteria. 

• Take into account any relevant considerations such as 

intent-to-treat analysis (see below), or how you will deal 

with missing data.   

•  If the sample size needed is too large for your resources, 

you will need to either obtain additional resources or 

scale back the aims of your study.  
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 b. If you plan to use existing data, you will need to go through 

a process similar to that in (a) before looking at the data:  

• Decide on the questions you are trying to answer. 

• Find out how the data were gathered.  

• Decide on inference procedures that i) will address your 

questions of interest and ii) have model assumptions 

compatible with how the data were collected.  

o If this turns out to be impossible, the data are not 

suitable. 

• Decide whether or not you will engage in data snooping. 

• Decide the type I error rate (or false discovery rate) and 

power that would be appropriate (considering the 

consequences of these types of errors in the situation you 

are studying).   

Then do a power analysis to see what sample size is needed 

to meet these criteria.  

• Take into account any relevant considerations such as 

those listed above. 

•  If the sample size needed is larger than the available data 

set, you will need to either scale back the aims of your 

study, or find or create another larger data set. 
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c. If data snooping is intended to be the purpose or an 

important part of your study, then before you look at the 

data, divide it randomly into two parts: One to be for used for 

discovery purposes (generating hypotheses), the other to be 

used for confirmatory purposes (testing hypotheses). 

• Be careful to do the randomization in a manner that 

preserves the structure of the data.  

o For example, if you have students nested in schools 

nested in school districts, you need to preserve the 

nesting.  

o e.g., if a particular student is assigned to one group 

(discovery or confirmatory), then the student's school 

and school district need to be assigned to the same 

group. 

• Using a type I error rate or false discovery rate may not 

be obligatory in the discovery phase, but may be 

practical to help you keep the number of hypotheses 

you generate down to a level that you will be able to 

test (with a reasonable bound on Type I error rate or 

false discovery rate, and a reasonable power) in the 

confirmatory phase 

• A preliminary consideration of Type I errors and power 

should be done to help you make sure that your 

confirmatory data set is large enough.  

o Be sure to then give further thought to consequences 

of Type I and II errors for the hypotheses you 

generate with the discovery data set, and set an 

overall Type I error rate (or false discovery rate) for 

the confirmatory stage.   
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III. Report your results carefully, aiming for honesty and 

transparency 

• State clearly the questions you set out to study. 

• State your methods, and your reasons for choosing those 

methods. For example: 

o  Why you chose the inference procedures you used; 

o  Why you chose the Type I error rate and power that 

you used. 

• Give details of how your data were collected. 

• State clearly what (if anything) was data snooping, and 

how you accounted for it in overall Type I error rate or 

False Discovery Rate. 

• Include a "limitations" section, pointing out any 

limitations and uncertainties in the analysis. Examples: 

o If power was not large enough to detect a practically 

significant difference; 

o Any uncertainty in whether model assumptions were 

satisfied; 

o If there was possible confounding;  

o If missing data created additional uncertainty, etc. 

• Be careful not to inflate or over-interpret conclusions, 

either in the abstract or in the results or conclusions 

sections. 
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USING AN INAPPROPRIATE METHOD OF ANALYSIS 

 

"Assumptions behind models are rarely articulated, let alone 

defended. The problem is exacerbated because journals tend to 

favor a mild degree of novelty in statistical procedures. Modeling, 

the search for significance, the preference for novelty, and the lack 

of interest in assumptions -- these norms are likely to generate a 

flood of nonreproducible results." 

David Freedman, Chance 2008, v. 21 No 1, p. 60 

 

Recall: Each frequentist inference technique (hypothesis test or 

confidence interval) involves model assumptions. 

• Different techniques have different model assumptions.  

• The validity of the technique depends (to varying extents) on 

whether or not the model assumptions are true for the context 

of the data being analyzed.  

• Many techniques are robust to departures from at least some 

model assumptions.  

o This means that if the particular assumption is not too 

far from true, then the technique is still approximately 

valid. 

o Illustration: Robustness demo 

 

 Thus, when using a statistical technique, it is important to ask: 

• What are the model assumptions for that technique? 

• Is the technique robust to some departures from the model 

assumptions? 

• What reason is there to believe that the model assumptions 

(or something close enough, if the technique is robust) are 

true for the situation being studied? 

Neglecting these questions is a common mistake in using 

statistics. Sometimes researchers check only some of the 

assumptions, perhaps missing some of the most important ones. 
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Unfortunately, the model assumptions vary from technique to 

technique, so there are few if any general rules. One general rule of 

thumb, however is: 

Techniques are least likely to be robust to departures from 

assumptions of independence. 

• Recall: Assumptions of independence are often phrased in 

terms of "random sample" or "random assignment", so these 

are very important. 

• One exception is that, for large enough populations, sampling 

without replacement is good enough, even though 

"independent" technically means sampling with replacement. 

• Variance estimates depend strongly on the assumption of 

independence, so results can be very misleading when 

observations are not independent. 

• Many techniques are most robust to violations of normality 

assumptions, at least if the sample size is large and the 

distribution is not strongly skewed or multimodal. 

o This is because test statistics are often sums or linear 

combinations, which by the Central Limit Theorem 

tend to be approximately normally distributed. (More 

below) 
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How do I know whether or not model assumptions are satisfied? 

Unfortunately, there are no one-size-fits-all methods, but here are 

some rough guidelines: 

1. When selecting samples or dividing into treatment groups, be 

very careful in randomizing according to the requirements of 

the method of analysis to be used.  

2. Sometimes (not too often) model assumptions can be 

justified plausibly by well-established facts, mathematical 

theorems, or theory that is well supported by sound empirical 

evidence. 

• Here, "well established" means well established by sound 

empirical evidence and/or sound mathematical reasoning.  

• This is not the same as "well accepted," since sometimes 

things may be well accepted without sound evidence or 

reasoning. 

• More below. 

3. Sometimes a rough idea of whether or not model assumptions 

might fit can be obtained by plotting the data or residuals 

obtained from a tentative use of the model.  

• Unfortunately, these methods are typically better at telling 

you when the model assumption does not fit than when it 

does. 

• Examples, guidelines, and cautions below.  
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Specific Situations Where Mistakes Involving Model 

Assumptions Are Often Made (More details below) 

A. Comparisons with drop-outs (Intent-to-treat analysis) 

B. Using a two-sample test comparing means when cases are 

paired (includes discussion of repeated measures) 

C. Fixed vs. random factors 

D. Analyzing data without regard to how they were collected 

E. Pseudoreplication  

F. Mistakes in regression 

For more discussion of inappropriate methods of analysis, see 

Harris et al (2009). 
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EXAMPLES OF CHECKING MODEL ASSUMPTIONS 

USING WELL-ESTABLISHED FACTS OR THEOREMS 

 

Recall: Here, "well established" means well established by 

empirical evidence and/or sound mathematical reasoning.  

• This is not the same as "well accepted," since sometimes 

things may be well accepted without sound evidence. 

 

1. Using laws of physics 

 

Hooke's Law says that when a weight that is not too large (below 

what is called the "elastic limit") is placed on the end of a spring, 

the length of the (stretched) spring is approximately a linear 

function of the weight.  

• This tells us that if we do an experiment with a spring by 

putting various weights (below the elastic limit) on it and 

measuring the length of the spring, we are justified in using a 

linear model, 

 

    Length = A"Weight + B 
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2. Using the Central Limit Theorem 

One form of The Central Limit Theorem says that for most 

distributions, a linear combination (e.g., the sum or the mean) of a 

large enough number of independent random variables is 

approximately normal.  

• Thus, if a random variable in question is the sum of 

independent random variables, then it is usually safe to 

assume that it is approximately normal.  

• For example, adult human heights (at least if we restrict to 

one sex) are the sum of many heights: the heights of the 

ankles, lower legs, upper legs, pelvis, many vertebrae, and 

head.  

o Empirical evidence suggests that these heights vary 

roughly independently (e.g., the ratio of height of lower 

leg to that of upper leg varies considerably).  

o Thus it is plausible by the Central Limit Theorem that 

human heights are approximately normal.  

o This in fact is supported by empirical evidence. 
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• The Central Limit Theorem can also be used to reason that 

some distributions are approximately lognormal -- that is, 

that the logarithm of the random variable is normal.  

o For example, the distribution of a pollutant might be 

determined by successive independent dilutions of an 

original emission.  

o This translates into mathematical terminology by saying 

that the amount of pollution (call this random variable 

Y) in a given small region is the product of independent 

random variables.  

o Thus logY is the sum of independent random variables.  

o If the number of successive dilutions is large enough, 

the reasoning above shows that logY is approximately 

normal, and hence that Y is approximately lognormal. 
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USING PLOTS TO CHECK MODEL ASSUMPTIONS  

 

Overall Cautions:  

1. Unfortunately, these methods are typically better at telling 

you when the model assumption does not fit than when it does. 

 

2. There is inherently an element of subjectivity in using model-

checking plots.  

o Some people are more likely than others to “see things 

that aren’t really there.”  

o Buja et al (2009) have recently proposed some protocols 

for taking this into account.  

3. Different techniques have different model assumptions, so 

additional model checking plots may be needed. 

o Be sure to consult a good reference for the particular 

technique you are considering using.  

General Rule of Thumb:  

• First check any independence assumptions,  

• then any equal variance assumption,  

• then any assumption on distribution (e.g., normal) of 

variables. 

Rationale: Techniques are usually least robust to departures 

from independence, and most robust to departures from 

normality.  

• See van Belle (2008), pp. 173 - 177 and the references 

given there for more detail. 
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Suggestions and Guidelines for 

Checking Specific Model Assumptions  

 

Checking for Independence 

Independence assumptions are usually formulated in terms of error 

terms rather than in terms of the outcome variables.  

• For example, in simple linear regression, the model 

equation is  

Y = ! + #x + $,     

      where Y is the outcome (response) variable and $ 

 denotes the error term (also a random variable).  

• It is the error terms that are assumed to be independent, 

not the values of the response variable.  

 

We do not know the values of the error terms $, so we can only plot 

the residuals ei (defined as the observed value yi minus the fitted 

value, according to the model), which approximate the error terms.  

 

Rule of Thumb: To check independence, plot residuals against:  

• Any time variables present (e.g., order of observation)  

• Any spatial variables present, 

• Any variables used in the technique (e.g., factors, 

regressors)  

A pattern that is not random suggests lack of independence. 

Rationale: Dependence on time or on spatial variables is a 

common source of lack of independence, but the other plots 

might also detect lack of independence. 
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Comments:  

 

1. Because time or spatial correlations are so frequent, it is 

important when making observations to record any time or spatial 

variables that could conceivably influence results.  

• This not only allows you to make the residual plots to detect 

possible lack of independence, but also allows you to change 

to a technique incorporating additional time or spatial 

variables if lack of independence is detected in these plots. 

 

2. Since it is known that the residuals sum to zero, they are not 

independent, so the plot is really a very rough approximation.  

 

3. Some models only require that errors are uncorrelated, not 

independent; model checks are the same as for independence. 

 

Checking for Equal Variance  

Plot residuals against fitted values (in most cases, these are the 

estimated conditional means, according to the model), since it is 

not uncommon for conditional variances to depend on conditional 

means, especially to increase as conditional means increase. (This 

would show up as a funnel or megaphone shape to the residual 

plot.) 

 

Especially with complex models, plotting against factors or 

regressors might also pick up unequal variance. 

 

Caution: Hypothesis tests for equality of variance are often not 

reliable, since they also have model assumptions and are typically 

not robust to departures from those assumptions. 
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Checking for Normality or Other Distribution 

Caution: A histogram (whether of outcome values or of residuals) 

is not a good way to check for normality, since histograms of the 

same data but using different bin sizes (class-widths) and/or 

different cut-points between the bins may look quite different.  

 

Instead, use a probability plot (also know as a quantile plot or Q-Q 

plot).  

• Most statistical software has a function for producing these. 

• Caution: Probability plots for small data sets are often 

misleading; it is very hard to tell whether or not a small data 

set comes from a particular distribution. 
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Checking for Linearity  

When considering a simple linear regression model, it is important 

to check the linearity assumption -- i.e., that the conditional means 

of the response variable are a linear function of the predictor 

variable.  

Graphing the response variable vs. the predictor can often give a 

good idea of whether or not this is true.  

However, one or both of the following refinements may be needed: 

1. Plot residuals (instead of response) vs. predictor.  

• A non-random pattern suggests that a simple linear model 

is not appropriate; you may need to transform the 

response or predictor, or add a quadratic or higher term to 

the mode. 

 

2. Use a scatterplot smoother such as lowess (also known as 

loess) to give a visual estimation of the conditional mean.  

• Such smoothers are available in many regression software 

packages.  

• Caution:  You may need to choose a value of a 

smoothness parameter. Making it too large will over 

smooth; making it too small will not smooth enough. 

   

When considering a linear regression with just two terms, plotting 

response (or residuals) against the two terms (making a three-

dimensional graph) can help gauge suitability of a linear model, 

especially if your software allows you to rotate the graph. 
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Caution: It is not possible to gauge from scatterplots whether a 

linear model in more than two predictors is suitable.  

• One way to address this problem is to try to transform the 

predictors to approximate multivariate normality.  

o See, e.g., Cook and Weisberg (1999), pp. 324 – 329. 

• This will ensure not only that a linear model is appropriate 

for all (transformed) predictors together, but also that a linear 

model is appropriate even when some transformed predictors 

are dropped from the model. 
 
 

Elaboration: If a linear model fits with all predictors included, it is 

not true that a linear model will still fit when some predictors are 

dropped.  

 

For example, if  

   E(Y|X1, X2) = 1 + 2X1 +3X2  

 

(showing that a linear model fits when Y is regressed on both 

X1and X2), but also 

 

   E( X1| X2) = log(X1), 

 

then it can be calculated that  

 

  E(Y|X1) = 1 +2X1 + 3log(X1), 

 

which says that a linear model does not fit when Y is regressed 

on X1 alone. 
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SPECIFIC SITUATIONS WHERE 

MISTAKES INVOLVING MODEL ASSUMPTIONS  

ARE COMMON 

A. INTENT TO TREAT ANALYSIS: COMPARISONS WITH 

DROPOUTS 

 

The Problem: In many forms of comparison of two treatments 

involving human subjects (or animals or plants), there are subjects 

who do not complete the treatment.  

• They may die, move away, encounter life circumstances that 

take priority, or just decide for whatever reason to drop out of 

the study or not do all that they are asked.  

• It is tempting to just analyze the data for those completing the 

protocol, essentially ignoring the dropouts. This is usually a 

serious mistake, for two reasons: 

1. In a good study, subjects should be randomized to treatment.  

o Analyzing the data for only those who complete the 

protocol destroys the randomization, so that model 

assumptions are not satisfied.  

o To preserve the randomization, outcomes for all subjects 

assigned to each group (whether or not they stick with the 

treatment) need to be compared. This is called intent-to-

treat (or intention-to-treat, or ITT) analysis. 
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2. Intent-to-treat analysis is usually more informative for 

consumers of the research.  

• For example, in studying two drug treatments, dropouts for 

reasons not related to the treatment can be expected to be, on 

average, roughly the same for both groups.  

• But if one drug has serious side-effects that prompt patients 

to discontinue use, that would show up in the drop-out rate, 

and be important information in deciding which drug to use 

or recommend. 

Reason 1 (and sometimes also reason 2) also applies when 

treatments are applied to animals, plants, or even objects. 

 

For more information on intent-to-treat analysis, see Freedman 

(2005, p.p. 5, 15), Freedman (2006), and van Belle (2008, pp. 156 

– 157).  
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B. USING A TWO-SAMPLE TEST COMPARING MEANS 

WHEN CASES ARE PAIRED (Includes discussion of 

Repeated Measures) 

One of the model assumptions of the two-sample t-tests for means 

is that the observations between groups, as well as within groups, 

are independent.  

• Thus if samples are chosen so that there is some natural 

pairing, then the members of pairs are not independent, so the 

two-sample t-test is not appropriate. 

Example 1: A random sample of heterosexual married couples is 

chosen. Each spouse of each pair takes a survey on marital 

happiness. The intent is to compare husbands' and wives' scores.  

• The two-sample t-test would compare the average of the 

husband's scores with the average of the wives' scores. 

• However, the samples of husbands and wives are not 

independent -- whatever factors influence a particular 

husband's score may influence his wife's score, and vice 

versa.  

• Thus the independence assumption between groups for a two-

sample t-test is violated.  

• In this example, we can instead consider the individual 

differences in scores for each couple: (husband's score) - 

(wife's score). If the questions of interest can be expressed in 

terms of these differences, then we can consider using the 

one-sample t-test (or perhaps a non-parametric test if the 

model assumptions of that test are not met). 
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Example 2: A test is given to each subject before and after a 

certain treatment. (For example, a blood test before and after 

receiving a medical treatment; or a subject matter test before and 

after a lesson on that subject) 

• This poses the same problem as Example 1: The "before" test 

results and the "after" test results for each subject are not 

independent.  

• The solution is the same: analyze the difference in scores. 

• Example 2 is a special case of what is called repeated 

measures: some measurement is taken more than once on the 

same unit.  

o Because repeated measures on the same unit are not 

independent, the analysis of such data needs a method 

that takes this lack of independence into account.  

o There are various ways to do this; just which one is best 

depends on the particular situation. 

 

 

 

 

 

 

 

 

 



 39 

C. INAPPROPRIATELY DESIGNATING A FACTOR AS 

FIXED OR RANDOM 

In Analysis of Variance and some other methodologies, there are 

two types of factors: fixed effect and random effect.  

Which type is appropriate depends on the context of the problem, 

the questions of interest, and how the data is gathered. Here are the 

differences: 

 

Fixed effect factor: Data has been gathered from all the levels of 

the factor that are of interest. 

Example: The purpose of an experiment is to compare the 

effects of three specific dosages of a drug on the response.  

• "Dosage" is the factor.  

• The three specific dosages in the experiment are the 

levels. 

• There is no intent to say anything about other dosages. 

• Therefore this is a fixed factor. 
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Random effect factor:  

• The factor has many possible levels.  

• All possible levels are of interest. 

• Only a random sample of levels is included in the data. 

Example: A large manufacturer of widgets is interested in 

studying the effect of machine operator on the quality final 

product. The researcher selects a random sample of operators 

from the large number of operators at the various facilities that 

manufacture the widgets and collects data on just these 

operators.  

• The factor is "operator."  

• Each operator is a level of the factor.  

• Since interest is not just in the operators for whom data is 

gathered, this is a random factor. 

• The analysis will not estimate the effect of each of the 

operators in the sample, but will instead estimate the 

variability attributable to the factor "operator". 

 

Note: Usage of "random" in this and similar contexts is not 

uniform.  

• For example, some authors, in discussing hierarchical 

(multilevel) analysis, may refer to an intercept as "random" 

when interest is restricted to a finite population with all 

members present in the data (e.g., the various states of the 

U.S.A.), but the intercept is allowed to be different for 

different members of the population.  

• Using the term "variable intercept" can help emphasize that, 

although the intercept is allowed to vary, interest is only in 

the finite population, with no implication of inference beyond 

that population. 
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The analysis of the data is different, depending on whether the 

factor is treated as fixed or as random.  

• Consequently, inferences may be incorrect if the factor is 

classified inappropriately.  

• Mistakes in classification are most likely to occur when more 

than one factor is considered in the study. 

Example: Two surgical procedures are being compared.  

• Patients are randomized to treatment.  

• Five different surgical teams are used.  

• To prevent possible confounding of treatment and surgical 

team, each team is trained in both procedures, and each 

team performs equal numbers of surgery of each of the 

two types.  

• Since the purpose of the experiment is to compare the 

procedures, the intent is to generalize to other surgical 

teams.  

• Thus surgical team should be considered as a random 

factor, not a fixed factor. 
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Comments:  

• This example can help understand why inferences might be 

different for the two classifications of the factor: Asserting 

that there is a difference in the results of the two procedures 

regardless of the surgical team is a stronger statement that 

saying that there is a difference in the results of the two 

procedures just for the teams in the experiment. 

• Technically, the levels of the random factor (in this case, the 

five surgical teams) used in the experiment should be a 

random sample of all possible levels.  

o This is in practice usually impossible, so the random 

factor analysis is usually used if there is reason to 

believe that the teams used in the experiment could 

reasonably be a random sample of all surgical teams 

who might perform the procedures.  

o However, this assumption needs careful thought to 

avoid possible bias.  

o For example, the conclusion would be sounder if it 

were limited to surgical teams which were trained in 

both procedures in the same manner and to the same 

extent, and who had the same surgical experiences, as 

the five teams actually studied. 
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Additional Comments about Fixed and Random Factors 

• The standard methods for analyzing random effects models 

assume that the random factor has infinitely many levels, but 

usually still work well if the total number of levels of the 

random factor is at least 100 times the number of levels 

observed in the data.  

o Situations where the total number of levels of the 

random factor is less than 100 times the number of 

levels observed in the data require special "finite 

population" methods. 

• An interaction term involving both a fixed and a random 

factor should be considered a random factor. 

• A factor that is nested in a random factor should be 

considered random. 
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D. ANALYZING DATA WITHOUT REGARD TO HOW 

THEY WERE COLLECTED 

Using a two-sample t-test when observations are paired (see 

above) is one example of this. Here is another: 

 

Example: [See Potcner and Kowalski (2004) for data and details.] 

An experiment was conducted to study the effect of two factors 

(pretreatment and stain) on the water resistance of wood.  

• Two types of pretreatment and four types of stain were 

considered.  

• For reasons of practicality and economy, the experiment was 

conducted with a split-plot design as follows:  

o Six entire boards were the whole plots.  

o One pretreatment was applied to each board, with the 

two pretreatments randomly assigned to the six boards 

(three boards per pretreatment).  

o Then each pre-treated board was cut into four smaller 

pieces of equal size (these were the split-plots).  

o The four pieces from each entire board were randomly 

assigned to the four stains.  

o The water resistance of each of the 24 smaller pieces 

was measured; this was the response variable. 

• The following chart shows the p-values of the three 

significance tests involved if the correct split-plot analysis is 

used, and if an incorrect analysis (assuming a crossed design, 

with the 6 treatment combinations randomly assigned to the 

24 smaller pieces of wood) is used.  

• Note that the conclusions from the two analyses would be 

quite different!  
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p-values Correct (Split Plot) 

Analysis 

Incorrect 

(Crossed Design) 

Analysis 

Interaction 0.231 0.782 

Pretreatment 0.115 0.002 

Stain 0.006 0.245 

 

 

Some of the many considerations to take into account in deciding 

on an appropriate method of analysis include: 

• The sampling method  

• Whether or not there was blocking in an experimental design 

• Whether factors are nested or crossed 

• Whether factors are fixed or random 

• Pseudoreplication (See below)  
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E. PSEUDOREPLICATION  

The term pseudoreplication was coined by Hurlbert (1984,p. 187) 

to refer to 

 "the use of inferential statistics to test for treatment effects 

with data from experiments where either treatments are not 

replicated (though samples may be) or replicates are not 

statistically independent."
 

 

His paper concerned ecological field experiments, but 

pseudoreplication can occur in other fields as well. 

 

In this context, replication refers to having more than one 

experimental (or observational) unit with the same treatment. Each 

unit with the same treatment is called a replicate.  

 

Note: There are other uses of the word replication -- for 

example, repeating an entire experiment is also called 

replication; each repetition of the experiment is called a 

replicate. This meaning is related to the one given above: If 

each treatment in an experiment has the same number r of 

replicates (in the sense given above), then the experiment can be 

considered as r replicates (in the second sense) of an experiment 

where each treatment is applied to only one experimental unit. 
 

Heffner et al (1996, p. 2558) distinguish a pseudoreplicate from a 

true replicate, which they characterize as 

 

 "the smallest experimental unit to which a treatment is 

independently applied." 
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Most models for statistical inference require true replication.  

• True replication permits the estimation of variability within a 

treatment.  

• Without estimating variability within treatments, it is 

impossible to do statistical inference.  

 

Example: Consider comparing two drugs by trying drug A on 

person 1 and drug B on person 2.   

• Drugs typically have different effects in different people.  

• So this simple experiment will give us no information about 

generalizing to people other than the two involved.  

• But if we try each drug on several people, then we can obtain 

some information about the variability of each drug, and use 

statistical inference to gain some information on whether or 

not one drug might be more effective than the other on 

average. 

 

True replicates are often confused with repeated measures or with 

pseudoreplicates. The following illustrate some of the ways this 

can occur. 

 

Examples: 

 

1. Suppose a blood-pressure lowering drug is administered to a 

patient, and then the patient's blood pressure is measured twice.  

• This is a repeated measure, not a replication.  

• It can give information about the uncertainty in the 

measurement process, but not about the variability in the 

effect of the drug.  

• On the other hand, if the drug were administered to two 

patients, and each patient's blood pressure was measured 

once, we can say the treatment has been replicated, and the 

replication may give some information about the variability 

in the effect of the drug. 
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2. A researcher is studying the effect on plant growth of different 

concentrations of CO2 in the air.   

• He needs to grow the plants in a growth chamber so that 

the CO2 concentration can be set.  

• He has access to only two growth chambers, but each one 

will hold five plants.   

• However, since the five plants in each chamber share 

whatever conditions are in that chamber besides the CO2 

concentration, and in fact may also influence each other, they 

are not independent replicates but are pseudoreplicates.  

• The growth chambers are the experimental units: the 

treatments are applied to the growth chambers, not to the 

plants independently.  

 

3. Two fifth-grade math curricula are being studied.  

• Two schools have agreed to participate in the study.  

• One is randomly assigned to use curriculum A, the other to 

use curriculum B.  

• At the end of the school year, the fifth-grade students in each 

school are tested and the results are used to do a statistical 

analysis comparing the two curricula.  

• There is no true replication in this study; the students are 

pseudo-replicates.  

• The schools are the experimental units; they, not the students, 

are randomly assigned to treatment.  

• Within each school, the test results (and the learning) of the 

students in the experiment are not independent; they are 

influenced by the teacher and by other school-specific factors 

(e.g., previous teachers and learning, socioeconomic 

background of the school, etc.).  
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Consequences of doing statistical inference using 

pseudoreplicates rather than true replicates 

 

Variability will probably be underestimated. This will result in 

• Confidence intervals that are too small. 

• An inflated probability of a Type I error (falsely rejecting a 

true null hypothesis).  

What to do about pseudoreplication  

 

1. Avoid it if at all possible.  

Key in doing this is to  

• Carefully determine what the experimental/observational 

units are;  

• Then be sure that each treatment is randomly applied to more 

than one experimental/observational unit.  

For example, in comparing curricula (Example 3 above), if ten 

schools participated in the experiment and five were randomly 

assigned to each treatment (i.e., curriculum), then each treatment 

would have five replications; this would give some information 

about the variability of the effect of the different curricula.  
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2.  If it is not possible to avoid pseudoreplication, then:  

a. Do whatever is possible to minimize lack of independence in the 

pseudo-replicates.  

• For example, in the study of effect of CO2 on plant growth, 

the researcher rearranged the plants in each growth chamber 

each day to mitigate effects of location in the chamber.  

 

b. Be careful in analyzing and reporting results.  

• Be open about the limitations of the study.  

• Be careful not to over-interpret results.  

• For example, in Example 2, the researcher could calculate 

what might be called "pseudo-confidence intervals" that 

would not be "true" confidence intervals, but which could be 

interpreted as giving a lower bound on the margin of error in 

the estimate of the quantity being estimated.  

 

c. Consider the study as preliminary (for example, for giving 

insight into how to plan a better study), or as one study that needs 

to be combined with many others to give more informative results.  
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Comments  

• Note that in Example 2, there is no way to distinguish 

between effect of treatment and effect of growth chamber; 

thus the two factors (treatment and growth chamber) are 

confounded. Similarly, in Example 3, treatment and school 

are confounded. 

• Example 3 may also be seen as applying the two treatments 

to two different populations (students in one school and 

students in the other school) 

• Observational studies are particularly prone to 

pseudoreplication. 

• Regression can sometimes account for lack of replication, 

provided data are close enough to each other.  

o The rough idea is that the responses for nearby values 

of the explanatory variables can give some estimate of 

the variability.  

o However, having replicates is better. 

 

F. MISTAKES IN REGRESSION 

(See Part IV) 
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