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• The theorem that depends on the model assumptions will tell 

us enough so that it is possible to do the following: 

o If we specify a probability (we'll use .95 to illustrate), we 

can find a number a so that 

(*)    The probability that !n lies between µ - a and µ + a is 

approximately 0.95.  

 

Caution: It is important to get the reference category straight 

here. This amounts to keeping in mind what is a random 

variable and what is a constant. Here, !n is the random 

variable (that is, the sample is varying), whereas  µ is 

constant. 

 

Note: The z-procedure for confidence intervals is only an 

approximate procedure; that is why the “approximately” is in 

(*) and below.  Many procedures are “exact”; we don’t need 

the “approximately” for them. 
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o A little algebraic manipulation allows us to restate (*) as 

(**)   The probability that µ lies between !n - a and !n + a  

  is approximately 0.95  

 

Caution: It is again important to get the reference category 

correct here. It hasn't changed: it is still the sample that is 

varying, not µ.  So the probability refers to !n, not to µ. 

 

 Thinking that the probability refers to µ is a common 

mistake in interpreting confidence intervals. 

 

 It may help to restate (**) as 

 

(***)  The probability that the interval from  

 !n - a to !n + a  contains µ is approximately 0.95. 

• We are now faced with two possibilities (assuming the model 

assumptions are indeed all true): 

1) The sample we have taken is one of the approximately 95% 

for which the interval from !n - a to !n + a does contain µ. ! 

 

2) Our sample is one of the approximately 5% for which the 

interval from  !n - a to !n + a does not contain µ.  ! 

 

Unfortunately, we can't know which of these two possibilities is 

true.  ! 
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• Nonetheless, we calculate the values of !n - a and !n + a for the 

sample we have, and call the resulting interval an approximate 

95% confidence interval for µ.  

o We can say that we have obtained the confidence interval 

by using a procedure that, for approximately 95% of all 

simple random samples from Y, of the given size, produces 

an interval containing the parameter we are estimating.  

o Unfortunately, we can't know whether or not the sample 

we have used is one of the approximately 95% of "good" 

samples that yield a confidence interval containing the true 

mean µ, or whether the sample we have is one of the 

approximately 5% of "bad" samples that yield a 

confidence interval that does not contain the true mean µ.  

o We can just say that we have used a procedure that 

"works" about 95% of the time.   

o Various web demos can demonstrate. 

 

In general: We can follow a similar procedure for many other 

situations to obtain confidence intervals for parameters. 

• Each type of confidence interval procedure has its own model 

assumptions. 

o If the model assumptions are not true, we are not sure that 

the procedure does what is claimed.  

o However, some procedures are robust to some degree to 

some departures from models assumptions -- i.e., the 

procedure works pretty closely to what is intended if the 

model assumption is not too far from true. 

o Robustness depends on the particular procedure; there are 

no "one size fits all" rules. 
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• We can decide on the "level of confidence" we want;  

o E.g., we can choose 90%, 99%, etc. rather than 95%. 

o Just which level of confidence is appropriate depends on 

the circumstances. (More later) 

• The confidence level is the percentage of samples for which 

the procedure results in an interval containing the true 

parameter. (Or approximate percentage, if the procedure is 

not exact.) 

• However, a higher level of confidence will produce a wider 

confidence interval. (See demo) 

o i.e., less certainty in our estimate.  

o So there is a trade-off between degree of confidence and 

degree of certainty. 

• Sometimes the best we can do is a procedure that only gives 

approximate confidence intervals. 

o i.e., the sampling distribution can be described only 

approximately. 

o i.e., there is one more source of uncertainty. 

o This is the case for the large-sample z-procedure. 

• If the sampling distribution is not symmetric, we can't expect 

the confidence interval to be symmetric around the estimate. 

o There may be slightly different procedures for calculating 

the endpoints of the confidence interval. 

• There are variations such as "upper confidence limits" or 

"lower confidence limits" where we are only interested in 

estimating how large or how small the estimate might be. 
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FREQUENTIST HYPOTHESIS TESTS AND P-VALUES 

 

We’ll now continue the discussion of hypothesis tests. 

 

Recall:  Most commonly used frequentist hypothesis tests involve 

the following elements: 

 

   1. Model assumptions  

   2. Null and alternative hypothesis 

   3. A test statistic (something calculated by a rule from a sample)  

o This needs to have the property that extreme values of the 

test statistic cast doubt on the null hypothesis. 

   4. A mathematical theorem saying, "If the model assumptions 

and the null hypothesis are both true, then the sampling 

distribution of the test statistic has this particular form." 

 

The exact details of these four elements will depend on the 

particular hypothesis test. 

 

We will use the example of a one-sided t-test for a single mean to 

illustrate the general concepts of of p-value and hypothesis testing 

as well as sampling distribution for a hypothesis test.  

 

• We have a random variable Y that is normally distributed. (This 

is one of the model assumptions.) 

• Our null hypothesis is: The population mean " of the random 

variable Y is "0.  

• For simplicity, we will discuss a one-sided alternative 

hypothesis: The population mean " of the random variable Y is 

greater than "0. (i.e., " > "0)  

• Another model assumption says that samples are simple random 

samples. We have data in the form of a simple random sample 

of size n. 
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• To understand the idea behind the hypothesis test, we need to 

put our sample of data on hold for a while and consider all 

possible simple random samples of the same size n from the 

random variable Y. 

o  For any such sample, we could calculate its sample 

mean 

! 

y  and its sample standard deviation s.  

o We could then use 

! 

y  and s to calculate the t-statistic         t 

= 

! 

y "µ
0

s
n

   

o Doing this for all possible simple random samples of size n 

from Y gives us a new random variable, Tn. Its distribution 

is called a sampling distribution. 

o The mathematical theorem associated with this inference 

procedure (one-sided t-test for population mean) tells us 

that if the null hypothesis is true, then the sampling 

distribution has what is called the t-distribution with n 

degrees of freedom. (For large values of n, the t-

distribution looks very much like the standard normal 

distribution; but as n gets smaller, the peak gets slightly 

smaller and the tails go further out.) 

• Now consider where the t-statistic for the data at hand lies on 

the sampling distribution.  Two possible values are shown in red 

and green, respectively, in the diagram below. 

o  Remember that this picture depends on the validity of the 

model assumptions and on the assumption that the null 

hypothesis is true. 
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If the t-statistic lies at the red bar (around 0.5) in the picture, 

nothing is unusual; our data are consistent with the null hypothesis.  

 

But if the t-statistic lies at the green bar (around 2.5), then the data 

would be fairly unusual -- assuming the null hypothesis is true.  

 

So a t-statistic at the green bar would cast some reasonable doubt 

on the null hypothesis.  

 

A t-statistic even further to the right would cast even more doubt 

on the null hypothesis.
 

 

Note: A little algebra will show that if t = 

! 

y "µ
0

s
n

 is unusually 

large, then so is 

! 

y , and vice-versa 
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p-values 

 

We can quantify the idea of how unusual a test statistic is by the p-

value. The general definition is: 

p-value = the probability of obtaining a test statistic at least as 

extreme as the one from the data at hand, assuming the model 

assumptions and the null hypothesis are all true.   

Recall that we are only considering samples, from the same 

random variable, that fit the model assumptions and of the same 

size as the one we have.  

 

So the definition of p-value, if we spell everything out, reads 

p-value = the probability of obtaining a test statistic at least as 

extreme as the one from the data at hand, assuming  

• the model assumptions are all true, and 

• the null hypothesis is true, and 

• the random variable is the same (including the same 

population), and 

• the sample size is the same. 

 

Comment: The preceding discussion can be summarized as 

follows: 

 If we obtain an unusually small p-value, then (at least) one of the 

following must be true: 

• At least one of the model assumptions is not true (in which 

case the test may be inappropriate). 

• The null hypothesis is false. 

• The sample we have obtained happens to be one of the 

small percentage that result in a small p-value. 
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The interpretation of "at least as extreme as" depends on the 

alternative hypothesis: 

• For the one-sided alternative hypothesis ! > !0, "at least as 

extreme as" means "at least as great as".  

o Recalling that the probability of a random variable lying in 

a certain region is the area under the probability 

distribution curve over that region, we conclude that for 

this alternative hypothesis, the p-value is the area under the 

distribution curve to the right of the test statistic calculated 

from the data.  

o Note that, in the picture, the p-value for the t-statistic at the 

green bar is much less than that for the t-statistic at the red 

bar. 

• Similarly, for the other one-sided alternative, ! < !0 , the p-

value is the area under the distribution curve to the left of the 

calculated test statistic.  

o Note that for this alternative hypothesis, the p-value for the 

t-statistic at the green bar would be much greater than the 

t-statistic at the red bar, but both would be large as p-

values go. 

• For the two-sided alternative " # "0, the p-value would be the 

area under the curve to the right of the absolute value of the 

calculated t-statistic, plus the area under the curve to the left 

of the negative of the absolute value of the calculated t-

statistic.  

o Since the sampling distribution in the illustration is 

symmetric about zero, the two-sided p-value of, say the 

green value, would be twice the area under the curve to the 

right of the green bar.   

 

 29 

Note that, for samples of the same size, the smaller the p-value, the 

stronger the evidence against the null hypothesis, since a smaller 

p-value indicates a more extreme test statistic.  

 

Thus, if the p-value is small enough (and assuming all the model 

assumptions are met), rejecting the null hypothesis in favor of the 

alternate hypothesis can be considered a rationale decision. 

 

Comments:  

1. How small is "small enough" is a judgment call. 

2. "Rejecting the null hypothesis" does not mean the null 

hypothesis is false or that the alternate hypothesis is true. 

3. Comparing p-values for samples of different size is a common 

mistake.  

• In fact, larger sample sizes are more likely to detect a 

difference, so are likely to result in smaller p-values than 

smaller sample sizes, even though the context being 

examined is exactly the same. 

We will discuss these comments further later. 
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MISINTERPRETATIONS AND MISUSES OF P-VALUES 
 

Recall:  

p-value = the probability of obtaining a test statistic at least as 

extreme as the one from the data at hand, assuming:  

• the model assumptions for the inference procedure used 

are all true, and  

• the null hypothesis is true, and  

• the random variable is the same (including the same 

population), and  

• the sample size is the same. 

Notice that this is a conditional probability: The probability that 

something happens, given that various other conditions hold. One 

common mistake is to neglect some or all of the conditions. 

 

Example A: Researcher 1 conducts a clinical trial to test a drug for 

a certain medical condition on 30 patients all having that condition.  

• The patients are randomly assigned to either the drug or a 

look-alike placebo (15 each).  

• Neither patients nor medical personnel know which patient 

takes which drug.  

• Treatment is exactly the same for both groups, except for 

whether the drug or placebo is used.  

• The hypothesis test has null hypothesis "proportion 

improving on the drug is the same as proportion improving 

on the placebo" and alternate hypothesis "proportion 

improving on the drug is greater than proportion improving 

on the placebo."  

• The resulting p-value is p = 0.15.  
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 Researcher 2 does another clinical trial on the same drug, 

with the same placebo, and everything else the same except that 

200 patients are randomized to the treatments, with 100 in each 

group. The same hypothesis test is conducted with the new data, 

and the resulting p-value is p = 0.03.  

    Are these results contradictory? No -- since the sample sizes are 

different, the p-values are not comparable, even though everything 

else is the same. (In fact, a larger sample size typically results in a 

smaller p-value; more later). 

Example B: Researcher 2 from Example A does everything as 

described above, but for convenience, his patients are all from the 

student health center of the prestigious university where he works. 

• He cannot claim that his result applies to patients other than 

those of the age and socio-economic background, etc. of the 

ones he used in the study, because his sample was taken from 

a smaller population. 

Example C: Researcher 2 proceeds as in Example A, with a sample 

carefully selected from the population to which he wishes to apply 

his results, but he is testing for equality of the means of an 

outcome variable for the two groups. 

• The hypothesis test he uses requires that the variance of the 

outcome variable for each group compared is the same.  

• He doesn’t check this, and in fact the variance for the 

treatment group is twenty times as large as the variance for 

the placebo group.  

• He is not justified in rejecting the null hypothesis of equal 

means, no matter how small his p-value. 
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Another common misunderstanding of p-values is the belief that 

the p-value is "the probability that the null hypothesis is true".  

• This is essentially a case confusing a conditional probability 

with the reverse conditional probability: In the definition of p-

value, “the null hypothesis is true” is the condition, not the 

event.  

• The basic assumption of frequentist hypothesis testing is that the 

null hypothesis is either true (in which case the probability that 

it is true is 1) or false (in which case the probability that it is true 

is 0). 

 

Note:  In the Bayesian perspective, it makes sense to consider "the 

probability that the null hypothesis is true" as having values other 

than 0 or 1.  

• In that perspective, we consider "states of nature;" in different 

states of nature, the null hypothesis may have different 

probabilities of being true.  

• The goal is then to determine the probability that the null 

hypothesis is true, given the data.  

• This is the reverse conditional probability from the one 

considered in frequentist inference (the probability of the data 

given that the null hypothesis is true). 
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Type I and II Errors and Significance Levels 

 

Type I Error: 

Rejecting the null hypothesis when it is in fact true is called a Type 

I error.  

Significance level: 

Many people decide, before doing a hypothesis test, on a 

maximum p-value for which they will reject the null hypothesis. 

This value is often denoted $ (alpha) and is also called the 

significance level.   

When a hypothesis test results in a p-value that is less than the 

significance level, the result of the hypothesis test is called 

statistically significant. 

 

Confusing statistical significance and practical significance is a 

common mistake.  

Example: A large clinical trial is carried out to compare a new 

medical treatment with a standard one. The statistical analysis 

shows a statistically significant difference in lifespan when 

using the new treatment compared to the old one.  

• However, the increase in lifespan is at most three days, 

with average increase less than 24 hours, and with poor 

quality of life during the period of extended life.  

• Most people would not consider the improvement 

practically significant. 

 

Caution: The larger the sample size, the more likely a 

hypothesis test will detect a small difference. Thus it is 

especially important to consider practical significance when 

sample size is large. 
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Connection between Type I error and significance level:     

A significance level $ corresponds to a certain value of the test 

statistic, say t$, represented by the orange line in the picture of a 

sampling distribution below (the picture illustrates a hypothesis 

test with alternate hypothesis "" > 0"). 

 

• Since the shaded area indicated by the arrow is the p-value 

corresponding to t$, that p-value (shaded area) is $.  

• To have p-value less than $, a t-value for this test must be to 

the right of t$.  

• So the probability of rejecting the null hypothesis when it is 

true is the probability that t > t$ , which we have seen is $.  

• In other words, the probability of Type I error is ". 

• Rephrasing using the definition of Type I error:  

The significance level " is the probability of making the 

wrong decision when the null hypothesis is true. 

• Note:  

o $ is also called the bound on Type I error.  

o Choosing a value $ is sometimes called setting a bound on 

Type I error. 
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Pros and Cons of Setting a Significance Level: 

• Setting a significance level (before doing inference) has the 

advantage that the analyst is not tempted to chose a cut-off 

on the basis of what he or she hopes is true.  

• It has the disadvantage that it neglects that some p-values 

might best be considered borderline.  

o This is one reason why it is important to report p-values 

when reporting results of hypothesis tests. It is also good 

practice to include confidence intervals corresponding to 

the hypothesis test.  

o For example, if a hypothesis test for the difference of two 

means is performed, also give a confidence interval for the 

difference of those means.  

o If the significance level for the hypothesis test is .05, then 

use confidence level 95% for the confidence interval. 
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Type II Error 

 

Not rejecting the null hypothesis when in fact the alternate 

hypothesis is true is called a Type II error.  

• Example 2 below provides a situation where the concept of 

Type II error is important.  

• Note: "The alternate hypothesis" in the definition of Type II 

error may refer to the alternate hypothesis in a hypothesis 

test, or it may refer to a "specific" alternate hypothesis. 

Example: In a t-test for a sample mean ", with null hypothesis "" = 

0" and alternate hypothesis "" > 0":  

• We might talk about the Type II error relative to the general 

alternate hypothesis "! > 0". 

• Or we might talk about the Type II error relative to the 

specific alternate hypothesis "! = 1".  

• Note that the specific alternate hypothesis is a special case of 

the general alternate hypothesis. 

In practice, people often work with Type II error relative to a 

specific alternate hypothesis.  

• In this situation, the probability of Type II error relative to the 

specific alternate hypothesis is often called %.  

• In other words, % is the probability of making the wrong 

decision when the specific alternate hypothesis is true.  

• The specific alternative is considered since it is more feasible 

to calculate % than the probability of Type II error relative to 

the general alternative. 

• See the discussion of power below for related detail.  
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Considering both types of error together: 

  

The following table summarizes Type I and Type II errors:  

Truth  

(for population studied) 

 

Null 

Hypothesis 

True 

Null 

Hypothesis 

False 

Reject Null 

Hypothesis 

Type I Error Correct 

Decision 

     

Decision   

(based on 

sample) Don’t reject 

Null 

Hypothesis 

Correct 

Decision 

Type II 

Error 

 

An analogy that can be helpful in understanding the two types of 

error is to consider a defendant in a trial.  

• The null hypothesis is "defendant is not guilty."  

• The alternate is "defendant is guilty." 

• A Type I error would correspond to convicting an innocent 

person. 

• Type II error would correspond to setting a guilty person free.  

• This could be more than just an analogy if the verdict hinges 

on statistical evidence (e.g., a DNA test), and where rejecting 

the null hypothesis would result in a verdict of guilty, and not 

rejecting the null hypothesis would result in a verdict of not 

guilty. 

• The analogous table would be: 



 38 

 

Truth   

Not Guilty Guilty 

 

Guilty 

Type I Error -- 

Innocent 

person goes to 

jail (and maybe 

guilty person 

goes free) 

 

Correct 

Decision 

  

 

 

Verdict 

 

Not Guilty 

 

Correct 

Decision 

Type II 

Error -- 

Guilty 

person goes 

free 
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The following diagram illustrates the Type I error and the Type II 

error  

• against the specific alternate hypothesis "" =1"  

• in a hypothesis test for a population mean ",  

• with null hypothesis "" = 0,"   

• alternate hypothesis "" > 0",  

• and significance level $= 0.05.  
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In the diagram, 

• The blue (leftmost) curve is the sampling distribution of the 

test statistic assuming the null hypothesis """ = 0." 

• The green (rightmost) curve is the sampling distribution of 

the test statistic assuming the specific alternate hypothesis "" 

=1".  

• The vertical red line shows the cut-off for rejection of the 

null hypothesis:  

o The null hypothesis is rejected for values of the test 

statistic to the right of the red line (and not rejected for 

values to the left of the red line). 

• The area of the diagonally hatched region to the right of the 

red line and under the blue curve is the probability of type I 

error ($). 

• The area of the horizontally hatched region to the left of the 

red line and under the green curve is the probability of Type 

II error against the specific alternative (%).  
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Deciding what significance level to use: 

 

This should be done before analyzing the data -- preferably before 

gathering the data. There are (at least) two reasons why this is 

important:  

1) The significance level desired is one criterion in deciding on an 

appropriate sample size.  

• See discussion of Power below. 

 

2) If more than one hypothesis test is planned, additional 

considerations need to be taken into account.  

• See discussion of Multiple Inference below. 

 

The choice of significance level should be based on the 

consequences of Type I and Type II errors: 

 

1. If the consequences of a Type I error are serious or expensive, a 

very small significance level is appropriate. 

 

Example 1: Two drugs are being compared for effectiveness in 

treating the same condition.  

o Drug 1 is very affordable, but Drug 2 is extremely 

expensive.   

o The null hypothesis is “both drugs are equally effective.”  

o The alternate is “Drug 2 is more effective than Drug 1.” 

o In this situation, a Type I error would be deciding that 

Drug 2 is more effective, when in fact it is no better than 

Drug 1, but would cost the patient much more money.  

o That would be undesirable from the patient’s perspective, 

so a small significance level is warranted. 

 

 

 

 



 42 

2. If the consequences of a Type I error are not very serious (and 

especially if a Type II error has serious consequences), then a 

larger significance level is appropriate. 

Example 2: Two drugs are known to be equally effective for a 

certain condition.  

o They are also each equally affordable.  

o However, there is some suspicion that Drug 2 causes a 

serious side effect in some patients, whereas Drug 1 has 

been used for decades with no reports of the side effect. 

o The null hypothesis is "the incidence of the side effect in 

both drugs is the same".  

o The alternate is "the incidence of the side effect in Drug 2 

is greater than that in Drug 1."  

o Falsely rejecting the null hypothesis when it is in fact true 

(Type I error) would have no great consequences for the 

consumer. 

o But a Type II error (i.e., failing to reject the null 

hypothesis when in fact the alternate is true, which would 

result in deciding that Drug 2 is no more harmful than 

Drug 1 when it is in fact more harmful) could have serious 

consequences from a public health standpoint.  

o So setting a large significance level is appropriate.  
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Comments:  

• Neglecting to think adequately about possible consequences 

of Type I and Type II errors (and deciding acceptable levels 

of Type I and II errors based on these consequences) before 

conducting a study and analyzing data is a common mistake 

in using statistics.  

• Sometimes there may be serious consequences of each 

alternative, so some compromises or weighing priorities may 

be necessary.  

o The trial analogy illustrates this well: Which is better or 

worse, imprisoning an innocent person or letting a guilty 

person go free?  

o This is a value judgment; value judgments are often 

involved in deciding on significance levels.  

o Trying to avoid the issue by always choosing the same 

significance level is itself a value judgment.  

• Different people may decide on different standards of 

evidence. 

o This is another reason why it is important to report p-

values even if you set a significance level.  

o It is not enough just to say, “significant at the .05 level,” 

“significant at the .01 level,” etc. 

• Sometimes different stakeholders have different interests that 

compete (e.g., in the second example above, the developers 

of Drug 2 might prefer to have a smaller significance level.) 

• See Wuensch (1994) for more discussion of considerations 

involved in deciding on reasonable levels for Type I and 

Type II errors.  

• See also the discussion of Power below.  

• Similar considerations hold for setting confidence levels for 

confidence intervals; see 

http://www.ma.utexas.edu/users/mks/statmistakes/conflevel.h

tml. 



 44 

POWER OF A STATISTICAL PROCEDURE 

 

Overview 

 

The power of a statistical procedure can be thought of as the 

probability that the procedure will detect a true difference of a 

specified type.  

• As in talking about p-values and confidence levels, the 

reference for "probability" is the sample. 

• Thus, power is the probability that a randomly chosen sample  

o satisfying the model assumptions  

o will give evidence of a difference of the specified type 

when the procedure is applied,  

o if the specified difference does indeed occur in the 

population being studied.  

• Note also that power is a conditional probability: the 

probability of detecting a difference, if indeed the difference 

does exist. 
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In many real-life situations, there are reasonable conditions that we 

would be interested in being able to detect or that would not make 

a practical difference.  

Examples: 

• If you can only measure the response to within 0.1 units, it 

doesn't really make sense to worry about falsely rejecting 

a null hypothesis for a mean when the actual value of the 

mean is within less than 0.1 units of the value specified in 

the null hypothesis. 

• Some differences are of no practical importance -- for 

example, a medical treatment that extends life by 10 

minutes is probably not worth it.  

 

In cases such as these, neglecting power could result in one or 

more of the following: 

• Doing much more work or going to more expense than 

necessary 

• Obtaining results which are meaningless 

• Obtaining results that don't answer the question of interest. 
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Elaboration 

 

For many confidence interval procedures, power can be defined as:  

 

The probability (again, the reference category is “samples”) 

that the procedure will produce an interval with a half-width 

of at least a specified amount.  

 

 

For a hypothesis test, power can be defined as: 

 

The probability (again, the reference category is “samples”) 

of rejecting the null hypothesis under a specified condition.  

 

Example: For a one-sample t-test for the mean of a population, 

with null hypothesis Ho: " = 100, you might be interested in the 

probability of rejecting Ho when " & 105, or when |" - 100| > 5, 

etc.  

As with Type I Error, we may think of power for a hypothesis test 

in terms of power against a specific alternative rather than against 

a general alternative. 

Example: If we are performing a hypothesis test for the mean of a 

population, with null hypothesis H0: " = 0 and alternate hypothesis 

" > 0, we might calculate the power of the test against the specific 

alternative H1: " = 1, or against the specific alternate H3: " = 3, 

etc. The picture below shows three sampling distributions: 

• The sampling distribution assuming H0 (blue; leftmost curve) 

• The sampling distribution assuming H1 (green; middle curve) 

• The sampling distribution assuming H3 (yellow; rightmost 

curve) 
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The red line marks the cut-off corresponding to a significance level 

$ = 0.05.  

 

• Thus the area under the blue curve to the right of the red 

line is 0.05. 

• The area under the green curve the to right of the red line 

is the probability of rejecting the null hypothesis (" = 0) if 

the specific alternative H1: " = 1 is true.  

o In other words, this area is the power of the test against 

the specific alternative H1: ! = 1.  

o We can see in the picture that in this case, this power is 

greater than 0.05, but noticeably less than 0.50. 

• Similarly, the area under the yellow curve the to right of 

the red line is the power of the test against the specific 

alternative H3: ! = 3.  

o Notice that the power in this case is much larger than 

0.5. 

This illustrates the general phenomenon that the farther an 

alternative is from the null hypothesis, the higher the power of the 

test to detect it.  (See Claremont WISE Demo) 
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Note: For most tests, it is possible to calculate the power against a 

specific alternative, at least to a reasonable approximation. It is not 

usually possible to calculate the power against a general 

alternative, since the general alternative is made up of infinitely 

many possible specific alternatives.  

 

Power and Type II Error 

 

Recall: The Type II Error rate % of a test against a specific alternate 

hypothesis test is represented in the diagram above as the area 

under the sampling distribution curve for that alternate hypothesis 

and to the left of the cut-off line for the test. Thus  

%  + (Power of a test against a specific alternate hypothesis)  

 = total area under sampling distribution curve  

 = 1,  

so 

Power = 1 - # 
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Power and Sample Size 

 

Power will depend on sample size as well as on the specific 

alternative.  

• The picture above shows the sampling distributions for one 

particular sample size.  

• If the sample size is larger, the sampling distributions will be 

narrower.  

• This will mean that sampling distributions will have less 

overlap, and the power will be higher.  

• Similarly, a smaller sample size will result in more overlap of 

the sampling distributions, hence in lower power. 

• This dependence of power on sample size allows us, in 

principle, to figure out beforehand what sample size is 

needed to detect a specified difference, with a specified 

power, at a given significance level, if that difference is 

really there.  

• See Claremont University's Wise Project's Statistical Power 

Applet for an interactive demonstration of the interplay 

between sample size and power for a one-sample z-test. 
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In practice, details on figuring out sample size will vary from 

procedure to procedure. Some considerations involved:  

• The difference used in calculating sample size  (i.e., the 

specific alternative used in calculating sample size) should be 

decided on the base of practical significance and/or "worst 

case scenario," depending on the consequences of decisions. 

• Determining sample size to give desired power and 

significance level will usually require some estimate of 

parameters such as variance, so will only be as good as these 

estimates.  

o These estimates usually need to be based on previous 

research or a pilot study.  

o It is wise to use a conservative estimate of variance 

(e.g., the upper bound of a confidence interval from a 

pilot study), or to do a sensitivity analysis to see how 

the sample size estimate depends on the parameter 

estimate. 

•  Even when there is a good formula for power in terms of 

sample size, "inverting" the formula to get sample size from 

power is often not straightforward. 

o This may require some clever approximation 

procedures.  

o Such procedures have been encoded into computer 

routines for many (not all) common tests. 

o See John C. Pezzullo's Interactive Statistics Pages for 

links to a number of online power and sample size 

calculators. 
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• Good and Hardin (2006, p. 34), Common Errors in Statistics, 

Wiley, p. 34) report that using the default settings for power 

and sample size calculations is a common mistake made by 

researchers.  

•  For discrete distributions, the "power function" (giving 

power as a function of sample size) is often saw-toothed in 

shape.  

o A consequence is that software may not necessarily 

give the optimal sample size for the conditions 

specified.  

o Good software for such power calculations will also 

output a graph of the power function, allowing the 

researcher to consider other sample sizes that might 

give be better than the default given by the software.  
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Common Mistakes involving Power: 

 

1. Accepting a null hypothesis when a result is not statistically 

significant, without taking power into account. 

• Since power typically increases with increasing sample size, 

practical significance is important to consider.  

• Looking at this from the other direction: Power decreases 

with decreasing sample size.  

• Thus a small sample size may not be able to detect an 

important difference.  

• If there is strong evidence that the power of a procedure will 

indeed detect a difference of practical importance, then 

accepting the null hypothesis is appropriate. 

• Otherwise “accepting the null hypothesis” is not appropriate 

-- all we can legitimately say then is that we fail to reject the 

null hypothesis. 

2. Neglecting to do a power analysis/sample size calculation 

before collecting data 

• Without a power analysis, you may end up with a result that 

does not really answer the question of interest. 

• You might obtain a result that is not statistically significant, 

but is not able to detect a difference of practical significance.  

• You might also waste resources by using a sample size that is 

larger than is needed to detect a relevant difference. 
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3. Confusing retrospective power and prospective power. 

• Power as defined above for a hypothesis test is also called 

prospective or a priori power.  

• It is a conditional probability, P(reject H0 | Ha), calculated 

without using the data to be analyzed.  

• Retrospective power is calculated after the data have been 

collected and analyzed, using the data.  

• Retrospective power can be used legitimately to estimate the 

power and sample size for a future study, but cannot 

legitimately be used as describing the power of the study 

from which it is calculated.   

• See Hoenig and Heisley (2001) and Wuensch et al (2003) for 

more discussion and further references. 
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