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SIMPLE RANDOM SAMPLES, PART 2: More Precise 

Definition of Simple Random Sample  
 

In practice in applying statistical techniques, we are interested in 

random variables defined on the population under study. To 

illustrate, recall the examples in Simple Random Sample, Part 1: 

1. In a medical study, the population might be all adults over 

age 50 who have high blood pressure.  

2. In another study, the population might be all hospitals in the 

U.S. that perform heart bypass surgery.  

3. If we’re studying whether a certain die is fair or weighted, 

the population is all possible tosses of the die.  

In these examples, we might be interested in the following random 

variables: 

Example 1: The difference in blood pressure with and without 

taking a certain drug.  

Example 2: The number of heart bypass surgeries performed in 

a particular year, or the number of such surgeries that are 

successful, or the number in which the patient has 

complications of surgery, etc. 

Example 3: The number that comes up on the die. 

If we take a sample of units from the population, we have a 

corresponding sample of values of the random variable.  
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For example, if the random variable (let's call it Y) is “difference 

in blood pressure with and without taking the drug”, then the 

sample will consist of values we can call y1, y2, ..., yn, where  

• n = number of people in the sample from the population of 

patients 

• The people in the sample are listed as person 1, person 2, etc. 

• y1 = the difference in blood pressures (that is, the value of Y) 

for the first person in the sample, 

• y2 = the difference in blood pressures (that is, the value of Y) 

for the second person in the sample 

• etc. 

 

We can look at this another way, in terms of n random variables 

Y1, Y2, ..., Yn , described as follows: 

• The random process for Y1 is “pick the first person in the 

sample”; the value of Y1 is the value of Y for that person – 

i.e., y1. 

• The random process for Y2 is “pick the second person in the 

sample”; the value of Y2 is the value of Y for that person – 

i.e., y2. 

• etc. 

 

The difference between using the small y's and the large Y's is that 

when we use the small y's we are thinking of a fixed sample of size 

n from the population, but when we use the large Y's, we are 

thinking of letting the sample vary (but always with size n). 

Note: The Yi’s are sometimes called identically distributed, 

because they have the same probability distribution.  
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Precise definition of simple random sample of a random 

variable:  

"The sample y1, y2, ... , yn is a simple random sample" means 

that the associated random variables Y1, Y2, ... , Yn are 

independent.   

Intuitively speaking, "independent" means that the values of any 

subset of the random variables Y1, Y2, ... , Yn do not influence the 

values of the other random variables in the list.   

 

Recall: We defined a random sample as one that is chosen by a 

random process. 

• Where is the random process in the precise definition? 

 

Note: To emphasize that the Yi’s all have the same distribution, the 

precise definition is sometimes stated as, “Y1, Y2, ... , Yn are 

independent, identically distributed,” sometimes abbreviated as 

iid.   
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Connection with the initial definition of simple random sample 

 

Recall the preliminary definition (from Moore and McCabe, 

Introduction to the Practice of Statistics) given in Simple Random 

Samples, Part 1: 

 

"A simple random sample (SRS) of size n consists of n 

individuals from the population chosen in such a way that 

every set of n individuals has an equal chance to be the 

sample actually selected." 

 

Recall Example 3 above: We are tossing a die; the number that 

comes up on the die is our random variable Y.  

• In terms of the preliminary definition, the population is all 

possible tosses of the die, and a simple random sample is n 

different tosses.  

• The different tosses of the die are independent events (i.e., 

what happens in some tosses has no influence on the other 

tosses), which means that in the precise definition above, the 

random variables Y1, Y2, ... , Yn are indeed independent: The 

numbers that come up in some tosses in no way influence the 

numbers that come up in other tosses. 
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Compare this with example 2: The population is all hospitals in the 

U.S. that perform heart bypass surgery.  

• Using the preliminary definition of simple random sample of 

size n, we end up with n distinct hospitals.  

• This means that when we have chosen the first hospital in our 

simple random sample, we cannot choose it again to be in 

our simple random sample.  

• Thus the events "Choose the first hospital in the sample; 

choose the second hospital in the sample; ... ," are not 

independent events: The choice of first hospital restricts the 

choice of the second and subsequent hospitals in the sample. 

• If we now consider the random variable Y = the number of 

heart bypass surgeries performed in 2008, then it follows that 

the random variables Y1, Y2, ... , Yn are not independent.   

The Bottom Line: In many cases, the preliminary definition does 

not coincide with the more precise definition.  

More specifically, the preliminary definition allows sampling 

without replacement, whereas the more precise definition 

requires sampling with replacement. 
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The Bad News: The precise definition is the one that is used in the 

mathematical theorems that justify many of the procedures of 

statistical inference. (More detail later.) 

 

The Good News:  

• If the population is large enough, the preliminary definition 

is close enough for all practical purposes. 

• In many cases where the population is not “large enough,” 

there are alternate theorems giving rise to alternate 

procedures using a “finite population correction factor” that 

will work 

Unfortunately, the question, "How large is large enough?" does not 

have a simple answer. 

 

The upshot:  

1) Using a “large population” procedure with a “small 

population” is a common mistake.  

2) One more difficulty in selecting an appropriate sample, 

which leads to one more source of uncertainty. 
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WHY RANDOM SAMPLING IS IMPORTANT 

Myth: "A random sample will be representative of the population". 

• This is false: a random sample might, by chance, turn out to 

be anything but representative.  

• For example, it’s possible (though unlikely) that if you toss a 

fair die ten times, all the tosses will come up six.  

• If you find a book or web page that gives this reason, apply 

some healthy skepticism to other things it claims. 

 

A slightly better explanation that is partly true but partly 

urban legend: "Random sampling prevents bias by giving all 

individuals an equal chance to be chosen." 

• The element of truth: Random sampling will eliminate 

systematic bias.  

• A practical rationale: This statement is often the best 

plausible explanation that is acceptable to someone with little 

mathematical background.  

• However, this statement could easily be misinterpreted as the 

myth above.  

• An additional, very important, reason why random sampling 

is important, at least in frequentist statistical procedures, 

which are those most often taught (especially in introductory 

classes) and used: 

The real reason: The mathematical theorems that justify most 

frequentist statistical procedures apply only to random samples.  

 

The next section elaborates. 
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OVERVIEW OF FREQUENTIST HYPOTHESIS TESTING 
 

Most commonly-used, frequentist hypothesis tests involve the 

following elements: 

1. Model assumptions  

2. Null and alternative hypotheses 

3. A test statistic.  

• This is something calculated by a rule from a sample.  

• It needs to have the property that extreme values of the test 

statistic cast doubt on the null hypothesis. 

4. A mathematical theorem saying, "If the model assumptions 

and the null hypothesis are both true, then the sampling 

distribution of the test statistic has this particular form." 

Note: 

• The sampling distribution is the probability distribution of 

the test statistic, when considering all possible suitably 

random samples of the same size. (More later.) 

• The exact details of these four elements will depend on the 

particular hypothesis test. 
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Example: In the case of the large sample z-test for the mean with 

two-sided alternative, the elements are: 

1. Model assumptions: We are working with simple random 

samples of a random variable Y that has a normal distribution.  

2. Null hypothesis: “The mean of the random variable in 

question is a certain value !0.”  

  Alternative hypothesis: "The mean of the random variable Y is 

not !0." (This is called the two-sided alternative.) 

3. Test statistic: 

! 

y  (the sample mean of a simple random 

sample of size n from the random variable Y). 

Before discussing item 4 (the mathematical theorem), we first 

need to do two things: 

I. Note on terminology:  

• The mean of the random variable Y is also called the 

expected value or the expectation of Y.  

o It’s denoted E(Y).  

o It’s also called the population mean, often denoted as µ.  

o It is what we do not know in this example. 

• A sample mean is typically denoted ! (read "y-bar").  

o It is calculated from a sample y1, y2, ... , yn of values of 

Y by the familiar formula ! = (y1+ y2+ ... + yn)/n. 

• The sample mean ! is an estimate of the population mean µ, 

but they are usually not the same.  

o Confusing them is a common mistake. 

• Note that I have written, "the population mean" but "a sample 

mean".  

o A sample mean depends on the sample chosen.  

o Since there are many possible samples, there are many 

possible sample means. 

o However, there is only one population mean associated 

with the random variable Y.  
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II. We now need to step back and consider all possible simple 

random samples of Y of size n.  

• For each simple random sample of Y of size n, we get a 

value of 

! 

y .  

• We thus have a new random variable 

! 

Y 
n : 

o The associated random process is “pick a simple 

random sample of size n” 

o The value of 

! 

Y 
n  is the sample mean 

! 

y  for this 

sample 

• Note that 

o 

! 

Y 
n  stands for the new random variable 

o 

! 

y  stands for the value of 

! 

Y 
n , for a particular sample 

of size n. 

• The distribution of 

! 

Y 
n  is called the sampling distribution 

of 

! 

Y 
n  (or the sampling distribution of the mean).  

Now we can state the theorem: 

4. The theorem states: If the model assumptions are all true (i.e., 

if Y is normal and all samples considered are simple random 

samples), and if in addition the mean of Y is indeed !0 (i.e., if 

the null hypothesis is true), then  

• The sampling distribution of 

! 

Y 
n  is normal 

• The sampling distribution of 

! 

Y 
n  has mean !0  

• The sampling distribution of 

! 

Y 
n  has standard deviation 

! 

"
n

, where " is the standard deviation of the original 

random variable Y.  

 



 13 

More Terminology: " is called the population standard deviation 

of X; it is not the same as the sample standard deviation s, 

although s is an estimate of ".  

 

The following chart and picture summarize the theorem and related 

information: 

 

 Random 

variable Y  

(population 

distribution) 

Related quantity 

calculated from a 

sample y1, y2, … , 

yn 

Random 

variable 

! 

Y 
n  

(sampling 

distribution) 

Mean Population 

mean ! 

(! = !0 if null 

hypothesis true)  

Sample mean 

! 

y  =  

(y1+ y2+ … yn)/n 

 

! 

y  is an estimate 

of the population 

mean ! 

Sampling 

distribution 

mean ! 

(! = !0 if null 

hypothesis 

true) 

Standard 

deviation 

Population 

standard 

deviation ! 

Sample standard 

deviation 

s =  

! 

1

n "1
(y " yi)

2

i=1

n

#  

s is an estimate of 

the population 

standard deviation 
! 

Sampling 

distribution 

standard 

deviation 

! 

"
n

 

 

Comment: The model assumption that the sample is a simple 

random sample (in particular, that the Yi’s as defined earlier are 

independent) is used to prove that the sampling distribution is 

normal and (even more importantly) that the standard deviation of 

the sampling distribution is 

! 

"
n
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 Consequences (More detail later):  

 

I. If the conclusion of the theorem is true, the sampling distribution 

of 

! 

Y 
n  is narrower than the original distribution of Y 

• In fact, the conclusion of the theorem gives us an idea of just 

how narrow it is, depending on n.  

• This will allow us to construct a hypothesis test. 

 

II. The only way we know the conclusion is true is if we know the 

hypotheses of the theorem (the model assumptions) are true.  

 

III. Thus: If the model assumptions are not true, then we do not 

know that the theorem is true, so we do not know that the 

hypothesis test is valid. 

 

In the example (large sample z-test for a mean), this translates to:  

 

If the sample is not a simple random sample, or if the random 

variable is not normal, then the reasoning establishing the 

validity of the test breaks down. 
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Comments:  

1. Different hypothesis tests have different model assumptions.  

• Some tests apply to random samples that are not simple.  

• For many tests, the model assumptions consist of several 

assumptions.  

• If any one of these model assumptions is not true, we do not 

know that the test is valid.  

2. Many techniques are robust to some departures from at least 

some model assumptions.  

• This means that if the particular assumption is not too far 

from true, then the technique is still approximately valid. 

• More later. 

3. Using a hypothesis test without paying attention to whether or 

not the model assumptions are true and whether or not the 

technique is robust to possible departures from model assumptions 

is a common mistake in using statistics. (More later.) 
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OVERVIEW OF 

FREQUENTIST CONFIDENCE INTERVALS 

Before continuing the discussion of hypothesis tests, it will be 

helpful to first discuss the related concept of confidence intervals.  

 

The General Situation: 

• We are considering a random variable Y.  

• We are interested in a certain parameter (e.g., a proportion, 

or mean, or regression coefficient, or variance) associated 

with the random variable Y.  

• We do not know the value of the parameter. 

• Goal 1: We would like to estimate the unknown parameter, 

using data from a sample. 

• Goal 2: We would also like to get some sense of how good 

our estimate is. 

The first goal is usually easier than the second. 

 

Example: If the parameter we are interested in estimating is the 

mean of the random variable, we can estimate it using a sample 

mean. 
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The idea for the second goal  (getting some sense of how good our 

estimate is):  

• Although we typically have just one sample at hand when we 

do statistics, the reasoning used in frequentist (classical) 

inference depends on thinking about all possible suitable 

samples of the same size n.  

• Which samples are considered "suitable" will depend on the 

particular statistical procedure to be used.  

• Each statistical procedure has model assumptions that are 

needed to ensure that the reasoning behind the procedure is 

sound.  

• The model assumptions determine which samples are 

"suitable." 

 

Example: The parameter we are interested in estimating is the 

population mean µ = E(Y) of the random variable Y. The 

confidence interval procedure is the large-sample z-procedure. 

• The model assumptions for this procedure are: The random 

variable is normal, and samples are simple random samples. 

• Thus in this case, "suitable sample" means “simple random 

sample”.  

• We will also assume Y is normal, so that the procedure will 

be legitimate. 

• We’ll use ! to denote the standard deviation of Y. 

• So we collect a simple random sample, say of size n, 

consisting of observations y1, y2, ... , yn.  

o For example, if Y is "height of an adult American 

male", we take a sample random sample of n adult 

American males; y1, y2, ... , yn are their heights.  

• We use the sample mean ! = (y1+ y2+ ... + yn)/n as our 

estimate of µ.  

o This is an example of a point estimate -- a numerical 

estimate with no indication of how good the estimate 

is.  
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• To get an idea of how good our estimate is, we look at all 

possible simple random samples of size n from Y.  

o In the specific example, we consider all possible simple 

random samples of adult American males, and for each 

sample of men, the list of their heights.  

• One way we can get a sense of how good our estimate is in 

this situation is to consider the sample means ! for all 

possible simple random samples of size n from Y.  

o This amounts to defining a new random variable, which 

we will call "n (read Y-bar sub n).  

o We can describe the random variable as "n as "sample 

mean of a simple random sample of size n from Y", or 

perhaps more clearly as: "pick a simple random sample 

of size n from Y and calculate its sample mean".  

o Note that each value of "n is an estimate of the 

population mean µ.   

• This new random variable "n has a distribution. This is called 

a sampling distribution, since it arises from considering 

varying samples.  

o The values of "n are all the possible values of sample 

means ! of simple random samples of Y – i.e, the 

values of our estimates of µ. 

o The distribution of "n gives us information about the 

variability (as samples vary) of our estimates of the 

population mean µ. 

o There is a mathematical theorem that proves that if the 

model assumptions are true, the mean of the sampling 

distribution is also µ.  

o This theorem also says that the sampling distribution is 

normal, and its standard deviation is 

! 

"
n

 

o The chart and picture below summarize some of this 

information. 

 


