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II. MULTIPLE INFERENCE 
 

"Recognize that any frequentist statistical test has a random 

chance of indicating significance when it is not really present. 

Running multiple tests on the same data set at the same stage of an 

analysis increases the chance of obtaining at least one invalid 

result. Selecting the one "significant" result from a multiplicity of 

parallel tests poses a grave risk of an incorrect conclusion. Failure 

to disclose the full extent of tests and their results in such a case 

would be highly misleading." 

Professionalism Guideline 8, Ethical Guidelines for Statistical 

Practice, American Statistical Association, 1997 

 

Performing more than one statistical inference procedure on the 

same data set is called multiple inference, or joint inference, or 

simultaneous inference, or multiple testing, or multiple 

comparisons, or the problem of multiplicity. 

 

Performing multiple inference using frequentist methods without 

considering the implications for Type I error is a common error 

in research using statistics.  

• For example, A. M. Strasak et al (2007) examined all papers 

from 2004 issues of the New England Journal of Medicine 

and Nature Medicine and found that 32.3% of those from 

NEJM and 27.3% from Nature Medicine were "Missing 

discussion of the problem of multiple significance testing if 

occurred." 

• These two journals are considered the top journals (according 

to impact figure) in clinical science and in research and 

experimental medicine, respectively.  
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The Problem 

 

Recall: If you perform a hypothesis test using a certain significance 

level (we’ll use 0.05 for illustration), and if you obtain a p-value 

less than 0.05, then there are three possibilities: 

1. The model assumptions for the hypothesis test are not 

satisfied in the context of your data. 

2. The null hypothesis is false. 

3. Your sample happens to be one of the 5% of samples 

satisfying the appropriate model conditions for which the 

hypothesis test gives you a Type I error – i.e., you falsely 

reject the null hypothesis.  

Now suppose you’re performing two hypothesis tests, using the 

same data for both. 

• Suppose that in fact all model assumptions are satisfied and 

both null hypotheses are true.  

• There is in general no reason to believe that the samples 

giving a Type I error for one test will also give a Type I error 

for the other test. 

• See Jerry Dallal’s Simulation 

(http://www.jerrydallal.com/LHSP/multtest.htm; linked with 

instructions on course home pate) 

•  This motivates considering the joint Type I error rate  
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Joint Type I error rate: This is the probability that a randomly 

chosen sample (of the given size, satisfying the appropriate model 

assumptions) will give a Type I error for at least one of the 

hypothesis tests performed. 

The joint Type I error rate is also known as the overall Type I 

error rate, or joint significance level, or the simultaneous Type I 

error rate, or the family-wise error rate (FWER), or the 

experiment-wise error rate, etc.  

• The acronym FWER is becoming more and more common, 

so will be used in the sequel, often along with another name 

for the concept as well. 
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Examples of common mistakes involving multiple inference: 

 

1. An especially serious form of neglect of the problem of multiple 

inference is the one alluded to in the quote from the ASA ethics 

page:  

• Trying several tests and reporting just one significant test, 

without disclosing how many tests were performed or 

correcting the significance level to take into account the 

multiple inference. 

•  Don’t do it! 

• To help you remember: Think Jelly Beans, 

http://xkcd.com/882/  

• To help drive home the message, see more of Jerry Dallal’s 

simulations:  

• http://www.jerrydallal.com/LHSP/jellybean.htm 

• http://www.jerrydallal.com/LHSP/cellphone.htm 

• http://www.jerrydallal.com/LHSP/coffee.htm 

 

2. Some textbooks and software packages advise using a 

hypothesis test for equal variance before using a hypothesis test 

that has equal variance as a model assumption (e.g., equal variance 

two-sample t-test; standard ANOVA test). 

• This can produce misleading results two ways 

o First, either test could produce Type I errors. 

o But the sequential use of the tests may lead to more 

misleading results than just the use of two tests.  

• Zimmerman (2004) discusses this in more detail. 
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Multiple inference with confidence intervals 

 

The problem of multiple inference also occurs for confidence 

intervals.  

• In this case, we need to focus on the confidence level.  

• Recall: A 95% confidence interval is an interval obtained by 

using a procedure that, for 95% of all suitably random 

samples, of the given size, from the random variable and 

population of interest, produces an interval containing the 

parameter we are estimating (assuming the model 

assumptions are satisfied).  

• In other words, the procedure does what we want (i.e. gives 

an interval containing the true value of the parameter) for 

95% of suitable samples.  

• If we’re using confidence intervals to estimate two 

parameters, there’s no reason to believe that the 95% of 

samples for which the procedure "works" for one parameter 

(i.e. gives an interval containing the true value of the 

parameter) will be the same as the 95% of samples for which 

the procedure "works" for the other parameter.  

• If we’re calculating confidence intervals for more than one 

parameter, we can talk about the joint (or overall or 

simultaneous or family-wise or experiment-wise) 

confidence level.  

• For example, a group of confidence intervals (for different 

parameters) has an overall 95% confidence level (or 95% 

family-wise confidence level, etc.) if the intervals are 

calculated using a procedure which, for 95% of all suitably 

random samples, of the given size from the population of 

interest, produces for each parameter in the group an interval 

containing that parameter (assuming the model assumptions 

are satisfied).   
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What to do about multiple inference 

 

Unfortunately, there is not (and can’t be) a simple formula to 

cover all cases:  

 

• Depending on the context, the samples giving Type I errors 

for two tests might be the same, they might have no overlap, 

or they could be somewhere in between – and we can’t know 

which might be the case. 

 

• Various techniques for bounding the FWER (joint Type I 

error rate) have been devised for various special 

circumstances.  

o Some will be discussed below. 

 

• There are also alternatives to considering FWER.  

o Some of these will be discussed below. 

 

• For more information on other methods for specialized 

situations, see, e.g., Hochberg and Tamhane (1987) and 

Miller (1981) 

 

• See Efron (2010) for both an account of the history (Chapter 

3) of the subject and discussion of some somewhat more 

recent developments in dealing with multiple inference, 

especially in large data sets. 
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Bonferroni method:  

 

Fairly basic probability calculations show that if the sum of the 

individual Type I error rates for different tests is ! ", then the 

overall (“family-wise”) Type I error rate (FWER) for the 

combined tests will be ! !.  

• For example, if you’re performing five hypothesis tests and 

would like an FWER (overall significance level) of at most 

0.05, then using significance level 0.01 for each test will give 

an FWER (overall significance level) of at most 0.05.  

• Similar calculations will show that if you’re finding 

confidence intervals for five parameters and want an overall 

confidence level of 95%, using the 99% confidence level for 

each confidence interval will give you overall confidence 

level at least 95%. (Think of confidence level as 1 - ".) 

The Bonferroni method can be a used as a fallback method when 

no other method is known to apply.  

• However, if a method that applies to the specific situation is 

available, it will often be better (less conservative; have 

higher power) than the Bonferroni method, so calculate by 

both methods and compare. 

• Holm’s procedure (which depends on the Bonferroni idea, 

but in a more sophisticated way) is a relatively easy (e.g., on 

a spreadsheet) method that gives higher power than the basic 

Bonferroni method. It’s described various places on the web 

– e.g., 

http://en.wikipedia.org/wiki/Holm%E2%80%93Bonferroni_

method  
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The basic Bonferroni method is also useful for dividing up the 

overall Type I error between different types of inference. 

• Example: If three confidence intervals and two hypothesis 

tests are planned, and an overall Type I error rate of .05 is 

desired, then using 99% confidence intervals and individual 

significance rates .01 for the hypothesis tests will achieve 

this. 

• This method can also be used to apportion Type I error rate 

between pre-planned inference and post-hoc inference  

o  pre-planned inference: the inferences planned as part 

of the design of the study  

o post-hoc inference:  the inferences based on looking at 

the data and noticing other things of interest.  

o These are also called  “data-snooping” – more on 

this tomorrow. 

o Example: If you plan 3 hypothesis tests, but might 

decide later to do more, you could plan to do the three 

“preplanned” hypothesis tests each at significance level 

.01, leaving .02 to divide between the data-snooping 

hypothesis tests  

• However, this apportioning should be done before analyzing 

the data.  

Whichever method is used, it’s important to make the calculations 

based on the number of tests that have been done, not just the 

number that are reported.  

• Remember Jelly Beans! 
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False discovery rate:  

 

An alternative to bounding Type I error was introduced by 

Benjamini and Hochberg (1995): bounding the False Discovery 

Rate.  

The False Discovery Rate (FDR) of a group of tests is the 

expected value of the ratio of falsely rejected hypotheses to all 

rejected hypotheses. 

("Expected value" refers to the mean of a distribution. Here, the 

distribution is the sampling distribution of the ratio of falsely 

rejected hypotheses to all rejected hypotheses tested.)  

 

Note: 

• The family-wise error rate (FWER) focuses on the possibility 

of making any Type I error among all the inferences 

performed. 

• The false discovery rate (FDR) tells you what proportion of 

the rejected null hypotheses are, on average, really false.  

• Bounding the FDR rather than the FWER may be a more 

reasonable choice when many inferences are performed, 

especially if there is little expectation of harm from falsely 

rejecting a null hypothesis.  

• Thus it’s increasingly being adopted in areas such as micro-

array gene expression experiments or neuro-imaging.  

• However, these may involve variations rather than the 

original definition given above; see Efron (2010) for more 

details. 
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As with the FWER, there are various methods of actually bounding 

the false discovery rate. 

• For the original false discovery rate, see  Benjamini and 

Hochberg (1995), Benjamini and Yekutieli (2001), and 

Benjamini and Yekutieli (2005)  

• For variations of false discovery rate, see Efron (2010). 

 

 

Higher Criticism (HC) 

 

This is another alternative to bounding Type I error that’s 

sometimes used in situations such as genome-wide testing.  

• See  Donoho and Jin (2015) for a review article on HC. 

• See Klaus and Strimmer (2013) for a discussion of 

connections between HC and FDR.  

 

Random Field Theory (RFT) 

 

• This method is used in functional imaging data to try to 

account for spatial correlation when performing multiple 

hypothesis tests. 

• See http://biostatistics.oxfordjournals.org/content/14/1/129 

 

Randomization methods 

• Lee and Rubin (2016) report a randomization-based method 

that can be helpful in some post-hoc subgroup analyses. 
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Multilevel Modeling   

 

Gelman et al (2012) have proposed that in some cases multilevel 

modeling is a better way to address multiple inference than 

frequentist methods 

• They point out that methods such as Bonferroni corrections 

have unfortunate side effects: 

o   They give large interval estimates for effects. 

o   Since they require smaller cutoffs for significance, 

they are likely to produce Type M errors (because of 

The Winner’s Curse). 

• Multilevel modeling uses a different approach to inference 

that typically produces both smaller interval estimates, and 

more moderate point estimates of effects than standard 

frequentist methods, so may be a better way to approach 

multiple inference. 

 

Bayesian Methods 

 

Bayesian methods of statistical inference can be used to obtain a 

“joint posterior distribution” for several parameters of interest.  

• Bayesian methods are not frequentist, so the problem with 

Type I errors does not apply (although Type M and S errors 

are still relevant.) 

• They still require careful modeling, both of the prior and of 

the likelihood model. 
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Subtleties and controversies 

  

Bounding the overall Type I error rate (FWER) will reduce the 

power of the tests, compared to using individual Type I error rates.  

• Some researchers use this as an argument against multiple 

inference procedures.  

• The counterargument is the argument for multiple inference 

procedures to begin with: Neglecting them will produce 

excessive numbers of false findings, so that the "power" as 

calculated from single tests is misleading. 

o See Maxwell and Kelley (2011) and Maxwell (2004) 
for more details. 

• Bounding the False Discovery Rate (FDR) will usually give 

higher power than bounding the overall Type I error rate 

(FWER). 

 

Consequently, it’s important to consider the particular 

circumstances, as in considering both Type I and Type II errors in 

deciding significance levels.  

• In particular, it’s important to consider the consequences of 

each type of error in the context of the particular research.  
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Examples: 

1. A research lab is using hypothesis tests to screen genes for 

possible candidates that may contribute to certain diseases.  

• Each gene identified as a possible candidate will undergo 

further testing. The results of the initial screening are not 

to be published except in conjunction with the results of 

the secondary testing,  

o  Case I: If the secondary screening is inexpensive 

enough that many second level tests can be run, then 

the researchers could reasonably decide to ignore 

overall Type I error in the initial screening tests, since 

there would be no harm or excessive expense in 

having a high Type I error rate.  

o   Case II: If the secondary tests were expensive, the 

researchers would reasonably decide to bound either 

family-wise Type I error rate or False Discovery Rate.  
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2. Consider a variation of the situation in Example 1:  

• The researchers are using hypothesis tests to screen genes 

as in Example 1, but plan to publish the results of the 

screening without doing secondary testing of the 

candidates identified.  

• In this situation, ethical considerations warrant bounding 

either the FWER or the FDR -- and taking pains to 

emphasize in the published report that these results are just 

of a preliminary screening for possible candidates, and 

that these preliminary findings need to be confirmed by 

further testing.  

The Bottom Line: No method of accounting for multiple 

inference is perfect, which is one more reason why replication of 

studies is important! 

 

Note: For more discussion of multiple inference in exploratory 

research, see Goeman and Solari plus discussion (2011). 
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III. DATA SNOOPING 

 

Remember Jelly Beans: http://xkcd.com/882/ 

 

Data snooping refers to statistical inference that the researcher 

decides to perform after looking at the data  

• Also known as post protocol analysis or post hoc analysis 

• Contrast with pre-planned inference (“per protocol 

analysis”), which the researcher plan has planned before 

looking at the data.  

Data snooping can be done: 

• professionally and ethically, or  

• misleadingly and unethically, or  

• misleadingly out of ignorance.  

Misleading data snooping out of ignorance is a common mistake 

in using statistics.  
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The problems with data snooping are essentially the problems of 

multiple inference.  

• So if you’re likely to engage in data snooping frequentist 

inference, plan to allocate some part of the overall Type I 

error rate to pre-planned inference and some part to data 

snooping. 

o For example, if you plan to have overall Type I error rate 

(FWER) 0.05, you might decide to use FWER 0.04 for 

pre-planned inference, and FWER 0.01 for data snooping. 

• One way in which researchers unintentionally obtain 

misleading results by data snooping is in failing to account 

for all of the data snooping they engage in.  

o In particular, in accounting for Type I error when data 

snooping, you need to count not just the actual hypothesis 

tests performed, but also all comparisons looked at when 

deciding which post hoc (i.e., not pre-planned) hypothesis 

tests to try. 
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For lots of amusing examples, see Tyler Vigen’s website 

http://tylervigen.com/.  

o The original version of the site allowed you to choose two 

variables from a very large list and find their correlation.  

o I got tired counting at several hundred, but I’d guess that 

he had over 1000 variables listed.  

o That makes around 1,000,000 pairs of variables.  

o If you did significance tests (at a .05 individual 

significance rate) for correlation for all those pairs, you 

would expect about 50,000 to be significant – so it 

shouldn’t be surprising if many of these 50,000 pairs are 

indeed highly correlated. 
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A More Serious Example:  A group of researchers plans to 

compare three dosages of a drug in a clinical trial.   

• There’s no pre-planned intent to compare effects broken 

down by sex, but the sex of the subjects is recorded.  

• The researchers have decided to have an overall Type I error 

rate of 0.05, allowing 0.03 for the pre-planned inferences and 

0.02 for any data snooping they might decide to do.  

• The pre-planned comparisons show no statistically 

significant difference between the three dosages when the 

data are not broken down by sex.  

• However, since the sex of the patients is known, the 

researchers decide to look at the outcomes broken down by 

combination of sex and dosage. 

o They notice that the results for women in the high-

dosage group look much better than the results for the 

men in the low dosage group, and decide to perform a 

hypothesis test to check that out.  

• In accounting for Type I error, the researchers need to take 

the number of data-snooping inferences performed as 15, not 

one.  

o The reason : They’ve looked at fifteen comparisons --

 there are 3"2 = 6 dosage"sex combinations, and hence 

(6"5)/2 = 15 pairs of dosage"sex combinations.  

o Thus the significance level for the post hoc test should 

not be 0.02, but (if the Bonferroni method is used) 

0.02/15.  

 

See the Appendix for more detailed suggestions on data snooping 

professionally and ethically. 
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IV: P-HACKING, THE REPLICABILITY CRISIS,  

P-CURVING, AND “THE GARDEN OF FORKING PATHS”  

P-hacking and the replicability crisis: 

Simonsohn et al (2013) introduced the term p-hacking to refer to a 

common practice that involves data snooping, outcome switching,  

and aspects of the file-drawer problem:  

Performing many hypothesis tests in analyzing the data for a 

study, but when publishing the results of the study, omitting 

mention of those tests that were not statistically significant. 

 

• So in p-hacking, researchers don’t relegate entire 

studies to “the file-drawer” --  just parts of studies. 

 

P-hacking (like may other common mistakes discussed here) 

contributes to what has become known as the replicability crisis:  

 

The large number of published “findings” that have never 

been confirmed by a follow-up study.  

 

• Many such results might indeed be “irreproducible results.”  

• Ioannidis’ paper, “Why Most Published Research Findings 

Are False,” (Ioannidis 2005) brought widespread attention to 

the replicability crisis. 

• Although there was initial skepticism and criticism of 

Ioannidis’ claims, scientists have increasingly been 

recognizing the lack of replications, and the practices 

contributing to this, as a serious problem. 

o See, e.g., Pashler and Harris (2012), and the examples 

given in Day 3 Notes under Underpowered Studies, 

Type M and S Errors, Using the same sample size for a  

replication,  and The File Drawer Problem 
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There are many ways to p-hack. Some ways fall under the category 

of data snooping. These include: 

 

• Collecting data until a statistically significant result is 

obtained. 

o Why is this a problem? 

 

 

• Deciding to exclude outliers on the basis of whether or not 

doing so will give a statistically significant result. 

o Why is this a problem? 

 

 

• Trying out more than one measure of a quantity of interest, 

then selecting one that gives statistical significance when 

others do not.  

o Why is this a problem? 

 

 

• First trying an analysis without breaking down into 

subgroups, then if results are not statistically significant, 

analyzing the data broken down into subgroups (e.g., 

gender), but reporting only the statistically significant results.  

o Why is this a problem? 

 

 

• Trying various methods of “binning” (discussed below) until 

getting one that gives a statistically significant result. 
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Like data-snooping, p-hacking is often done out of ignorance that 

it gives deceptive results.  

 

• There’s also a gray area/slippery slope where researchers feel 

impelled to “make the most” of their data.  

o This can also lead to “spinning,” which might also 

include describing results that are not statistically 

significant as “promising,” or results that are 

questionably practically significant as “strong” rather 

than “modest.” 

• For a real example of p-hacking in cancer research, plus 

discussion of spinning and the file drawer problem, see 

Couzin-Frankel (2013) 
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Contrived example: The course description for this SSI course 

included the sentence, 

 

“In 2011, psychologists Simmons, Nelson and Simonsohn 

brought further attention to this topic by using methods 

common in their field to “show” that people were almost 1.5 

years younger after listening to one piece of music than after 

listening to another.”   

 

Some of the things these authors did to produce this nonsensical 

conclusion: 

• Lots of data snooping.  

o In particular, they gathered information on several 

covariates, but adjusted for only one (father’s age), in 

the “report”. 

• Lack of transparency in reporting results. 

o In particular, not mentioning that they had gathered the 

information on other covariates and cherry-picked the 

that gave the result they wanted. 

• The sample size was not set in advance.  

o There was no consideration of power in deciding on 

sample size. 

o Instead, the researchers checked every few observations 

and stopped when the results reached a preset 

significance level. 

o The sample size was too small to give reasonable 

power.  

• There was no adjusting for multiple testing despite all the 

multiple inference involved in data snooping and in deciding 

when to stop sampling. 
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Caution: Although the Simmons et al paper did a good job of 

making the point that common but questionable practices can lead 

to absurd results, the author’s recommendations for better practices 

fall short of what is needed. (See 

http://www.ma.utexas.edu/blogs/mks/2013/01/09/a-mixed-bag/ for 

more discussion.) 
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P-curving 

 

Simonsohn et al (2013) have proposed a method, called p-curving, 

to help detect the presence of p-hacking. 

 

• The purpose of p-curving is [to try] “to rule out selective 

reporting as a likely explanation for a set of statistically 

significant findings.” (p. 5) – just as the purpose of 

significance testing is [to try] “to rule out chance as a likely 

explanation for an observed effect” (p. 5) 

 

• A p-curve is “the distribution of statistically significant p-

values for a set of independent findings” (p. 3) 

 

•  The utility of p-curves depends on results in mathematical 

statistics saying that a p-curve will have a different shape 

when the null hypothesis is false than when the null 

hypothesis is true, and that the shape will also depend on 

effect size and sample size. 

 

o The net result is that p-hacking will produce alterations 

in the shape of the p-curve. 

 

• The authors have also produced an online app and user’s 

guide at http://www.p-curve.com/ 

 

• The technique appears to have prompted a fair amount of 

discussion and self-questioning among psychologists.  
 

o You might want to do your own web search on the 

topic 

• However, use of the technique has been overzealous in some 

cases, accusing people of deliberate malfeasance when they 

were acting out of ignorance. 
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The garden of forking paths 

 

Gelman and Loken (2013 and 2014b) introduced the metaphor 

“Garden of Forking Paths” to refer to the many branching choices 

researchers can make when analyzing their data.  

 

• They point out that there are many possible choices that 

researchers can make in analyzing data that seem reasonable 

yet might be influenced by the data. 

 

• Thus different data sets analyzed for the same question might 

reasonably lead to different choices. 

 

• Thus the metaphor “garden of forking paths” (from the short 

story by Jorge Luis Borges) 

 

• These choices are often not made deliberately to “game the 

system. 

 

• Thus terms such as  “fishing” or “p-hacking,” which suggest 

deliberate acts, are often falsely accusatory.  

  

• Nonetheless, the fact that decisions are contingent on the data 

means that calculated p-values are not meaningful. 

 

• At the same time, studying the data to find out patterns and 

make tentative analysis decisions can be of value in 

understanding the problems being studied. 

 

• Machine learning methods are usually highly data-dependent. 

 

• Bayesian methods also encounter the garden of forking paths. 
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• Meta-analysis attempts to use results from several studies to 

obtain better understanding. 

 

o However, meta-analysis is subject to the same problems 

as any statistical analysis, and can be biased by not 

accounting for bias in studies included.  

o Example: Jauhar et al (2014) point out problems with 

previous meta-analyses of studies of cognitive behavior 

therapy for schizophrenia, and provide a new one 

taking into account sources of bias in the studies 

included – with differing results. 

 

• The metaphor of the garden of forking paths can also apply to 

analysis decisions that are not entirely data dependent. 

 

Example: Silberzahn and Uhlman (2015) asked 29 research 

teams to answer the same research question (“are football 

(soccer) referees more likely to give red cards to players with 

dark skin than to players with light skin?”) with the same 

data set. The results obtained by the different teams are 

summarized in the graph at 

http://www.nature.com/news/crowdsourced-research-many-

hands-make-tight-work-1.18508#/b3 

 

• Bernau et al (2014) introduces a possibly promising method 

of dealing with some of the problems of data-dependence, 

different methods of study, and weaknesses of meta-analysis. 

They produced a combined data set of gene expression and 

ovarian cancer survival based on 10 different data sets. They 

also identified from the literature 14 models for predicting 

patient survival from gene expression, and did cross-

validation of models across data-sets. The effort required was 

huge. [See Donoho (2015) p. 30 for a more detailed 

summary.] 
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• Ioannidis (2008) introduced the term “vibration of effects” to 

refer to the variability of effect sizes that can result from the 

different analysis choices for the same data set (i.e., from the 

garden of forking paths).  

o He shows results of a simulation where some analysis 

choices produced effect sizes twice as large as others. 

o This provides another reason (in addition to The 

Winner’s Curse) why calculated effect sizes (as well as 

p-values) can be misleading 

 

 

The bottom line: Replication is really important! 
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Gelman and Loken (2013 and 2014b) also discuss possible (at least 

partial) solutions: 

 

• Preregistration works for some fields. 

o Caution: Some preregistration sites defeat their purpose 

by changing analysis details after the fact; see 

http://andrewgelman.com/2015/10/10/doomed-to-fail-a-

pre-registration-site-for-parapsychology/#comment-

246794 for some elaboration. 

 

• An exploratory study followed by pre-publication replication 

can work well in some situations (e.g., the Nosek et al study 

mentioned yesterday.) 

 

• In areas where most data is observational, Gelman and Loken 

recommend full study of the data despite the problem of 

multiplicities.  

o In some cases, multilevel modeling can help. 

 

• Researchers need to distinguish carefully between 

exploratory and confirmatory data analysis and be aware of 

the value and limitations of each. 

 

• More research is needed into how to handle the problem of 

multiple comparisons, particularly in light of the garden of 

forking paths and vibration of effects. 

 

o One proposal to help is to do a “mock” analysis and 

report, using simulated data, before initiating collecting 

or analyzing real data. See Humphreys et at (2013) and 

Gelman  
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Impediments to quality replication 

 

Ioannidis (2012) points out several problems that may occur with 

replications: 

• In some fields, current customs may make it difficult to get 

funding for replications or to get replications published. 

• In some cases, replications done by the same research team 

as the original study may be influenced by the researchers’ 

belief in the findings of the original study, or may have the 

same weak spots as the original study. 

• Even replications done by different research teams may be 

influenced by the original research team. For example, 

o The replication team may believe that the purpose of 

replication is to confirm the original results (“obedient 

replication”); the garden of forking paths often makes 

this possible. 

o The original research team may have the influence to 

determine which replications do or do not get 

published, their interpretation, etc. (“obliged 

replication”)  

 

Ioannidis offers possible means to help reduce these problems: 

• Replications involving several teams and researchers, 

preferably including those endorsing different theories. 

• Using pre-specified protocols and analyses 

• Fully documenting the reasoning and analysis 

• Making raw data and analysis code available 

• Post-publication review. 
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V: USING AN INAPPROPRIATE METHOD OF ANALYSIS 

 

"Assumptions behind models are rarely articulated, let alone 

defended. The problem is exacerbated because journals tend to 

favor a mild degree of novelty in statistical procedures. Modeling, 

the search for significance, the preference for novelty, and the lack 

of interest in assumptions -- these norms are likely to generate a 

flood of nonreproducible results." 

David Freedman, Chance 2008, v. 21 No 1, p. 60 

 

Recall: Each frequentist inference technique (hypothesis test or 

confidence interval) involves model assumptions. 

 

• Different techniques have different model assumptions.  

 

• The validity of the technique depends (to varying extents) on 

whether or not the model assumptions are true for the context 

of the data being analyzed.  

 

• Many techniques are robust to departures from at least some 

model assumptions.  

o This means that if the particular assumption is not too 

far from true, then the technique is still approximately 

valid. 

o Illustration: Rice Virtual Lab in Statistics Robustness 

Simulation  
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Thus, when using a statistical technique, it’s important to ask: 

• What are the model assumptions for that technique? 

• Is the technique robust to some departures from the model 

assumptions? 

• What reason is there to believe that the model assumptions 

(or something close enough, if the technique is robust) are 

true for the situation being studied? 

Neglecting these questions is a very common mistake in using 

statistics.  

• Sometimes researchers check only some of the assumptions, 

perhaps missing some of the most important ones. 

Unfortunately, the model assumptions vary from technique to 

technique, so there are few if any general rules. One general rule 

of thumb, however is: 
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Techniques are least likely to be robust to departures from 

assumptions of independence. 

• Recall: Assumptions of independence are often phrased in 

terms of "random sample" or "random assignment", so these 

are very important. 

• One exception is that, for large enough populations, sampling 

without replacement is good enough, even though 

"independent" technically means sampling with replacement. 

• Variance estimates depend strongly on the assumption of 

independence, so results can be very misleading when 

observations are not independent. 

 

Note: Many techniques are most robust to violations of normality 

assumptions, at least if the sample size is large and the distribution 

is not strongly skewed or multimodal. 

• This is because test statistics are often sums or linear 

combinations, which by “the” Central Limit Theorem are 

often approximately normally distributed. (See Appendix re 

Checking Model Assumptions) 
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General advice and cautions: 

• You may need to look hard to find model assumptions and 

information about robustness! 

o For basic statistical techniques, DeVeaux, Velleman 

and Bock, Statistics, Data and Models is quite good on 

model assumptions and robustness. 

o For other techniques, try searching for review articles in 

journals such as Statistical Science, The American 

Statistician, or Journal of the American Statistical 

Society. 

 

• Sometimes simulations (if well done) can help. For example: 

o Simulations might help decide how plausible it is that 

your data come from a certain distribution. 

o Simulations can sometimes help get a feel for how 

robust a procedure is to departures from model 

assumptions. 

 

• Do not automatically use default settings in software. 
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How do I know whether or not model assumptions are satisfied? 

Unfortunately, there are no one-size-fits-all methods, but here are 

some rough guidelines: 

1. When selecting samples or dividing into treatment groups, be 

very careful in randomizing according to the requirements of 

the method of analysis to be used.  

• Remember that “random” is not the same as “haphazard”!  

• Be careful to check the precise randomizing assumptions 

of the study design/method of analysis you plan to use.  

o For example, there are many types of ANOVA 

analyses, each with its own requirements for study 

design, including randomization.  

2. Sometimes (but not very often!) model assumptions can be 

justified plausibly by well-established facts, mathematical 

theorems, or theory that’s well supported by sound empirical 

evidence. 

• Here, "well established" means well established by sound 

empirical evidence and/or sound mathematical reasoning.  

• This is not the same as "well accepted," since sometimes 

things may be well accepted without sound evidence or 

reasoning. 

• More in Appendix 
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3. Sometimes a rough idea of whether or not model assumptions 

might fit can be obtained by plotting the data or residuals 

obtained from a tentative use of the model.  

• Unfortunately, these methods are typically better at telling 

you when the model assumption does not fit than when it 

does. 

• Some examples, guidelines, and cautions are in the 

Appendix.  

• But always remember “The Big Picture”: 
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Robert Kass’ Big Picture of Statistical Inference 

 

In Kass (2011, p. 6, Figure 1), Robert Kass has proposed the 

following diagram to depict the “big picture” in using statistics: 

 

 REAL WORLD   THEORETICAL WORLD 

 

       Scientific Models 

 

  Data 

 

       Statistical Models 

 

 

    Conclusions 

 

Points this picture is intended to show include: 

• Both statistical and scientific models are abstractions, 

living in the “theoretical” world, as distinguished from 

the “real” world where data lie. 

• Conclusions straddle these two worlds: conclusions 

about the real world typically are indirect, via the 

scientific models.  

• “When we use a statistical model to make a statistical 

inference we implicitly assert that the variation 

exhibited by data is captured reasonably well by the 

statistical model, so that the theoretical world 

corresponds reasonably well to the real world.” (p. 5) 

• Thus “careful consideration of the connection between 

models and data is a core component of … the art of 

statistical practice…” (p. 6) 

 

For a recent accessible discussion of problems with model 

assumptions in a topic of current wide interest (value-added 

models in education), see Wainer (2011). 
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VI. METHODS (AND THEIR LIMITATIONS) FOR 

CHECKING MODEL ASSUMPTIONS 

See Appendix for some suggestions.  

But bear in mind: 

• These typically can help sometimes to see that a 

model is wrong, but can’t tell you if a model is right. 

• “Reality resists imitation through a model, ” physicist 

Erwin Schroedinger, 

https://www.tuhh.de/rzt/rzt/it/QM/cat.html#sect6 

• “All models are wrong but some are useful,” 

statistician George Box 

https://en.wikipedia.org/wiki/All_models_are_wrong  
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VII. SOME SPECIFIC SITUATIONS WHERE 

MISTAKES INVOLVING MODEL ASSUMPTIONS  

ARE COMMON 

A. Comparing groups in studies with drop-outs (Intent-to-treat 

analysis) 

B. Using a two-sample test comparing means when cases are 

paired (and generalizations) 

C. Not distinguishing between fixed and random factors in 

ANOVA 

D. Analyzing data without regard to how they were collected 

E. Pseudoreplication  

F. Mistakes in regression  

For more discussion of some inappropriate methods of analysis, 

see: 

• References in the Appendix 

• Harris et al (2009)  

• The Common Mistakes in Using Statistics website at 

http://www.ma.utexas.edu/users/mks/statmistakes/TOC.html 
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A. Intent to Treat Analysis: Comparing groups when there are 

Dropouts 
 

The Problem: In many forms of comparison of two treatments 

involving human subjects (or animals or plants), there are subjects 

who do not complete the treatment.  

• They may die, move away, encounter life circumstances that 

take priority, or just decide for whatever reason to drop out of 

the study or not do all that they are asked.  

• It’s tempting to just analyze the data for those completing the 

protocol, essentially ignoring the dropouts. This is usually a 

serious mistake, for two reasons: 

1. In a good study, subjects should be randomized to treatment.  

o Analyzing the data for only those who complete the 

protocol destroys the randomization, so that model 

assumptions are not satisfied.  

o To preserve the randomization, outcomes for all subjects 

assigned to each group (whether or not they stick with the 

treatment) need to be compared. This is called intent-to-

treat (or intention-to-treat, or ITT) analysis. 
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2. Intent-to-treat analysis is usually more informative for 

consumers of the research.  

• For example, in studying two drug treatments, dropouts for 

reasons not related to the treatment can be expected to be, on 

average, roughly the same for both groups.  

• But if one drug has serious side-effects that prompt patients 

to discontinue use, that would show up in the drop-out rate, 

and be important information in deciding which drug to use 

or recommend. 

Reason 1 (and sometimes also reason 2) also applies when 

treatments are applied to animals, plants, or even objects. 

 

Unfortunately, when subjects drop out of an experiment, data 

collection for them is incomplete.  

• Thus, analysis often requires figuring out how best to 

deal with missing data. 

 

For more information on intent-to-treat analysis, see Freedman 

(2005, pp. 5, 15), Freedman (2006), van Belle (2008, pp. 156 – 

157), and Moher et al (2010) 
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B. Using a Two-Sample Test Comparing Means when Cases 

Are Paired (and similar problems) 

One of the model assumptions of the two-sample t-tests for means 

is that the observations between groups, as well as within groups, 

are independent.  

• Thus if samples are chosen so that there is some natural 

pairing, then the members of pairs are not independent, so the 

two-sample t-test is not appropriate. 

Example 1: A random sample of heterosexual married couples is 

chosen. Each spouse of each pair takes a survey on marital 

happiness. The intent is to compare husbands' and wives' scores.  

• The two-sample t-test would compare the average of the 

husband's scores with the average of the wives' scores. 

• However, it’s not reasonable to assume that the samples of 

husbands and wives are independent -- some factors 

influencing a particular husband's score are likely to 

influence his wife's score, and vice versa.  

• Thus the independence assumption between groups for a two-

sample t-test is violated.  

• In this example, we can instead consider the individual 

differences in scores for each couple: (husband's score) - 

(wife's score). If the questions of interest can be expressed in 

terms of these differences, then we can consider using the 

one-sample t-test (or perhaps a non-parametric test if the 

model assumptions of that test are not met). 
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Example 2: A test is given to each subject before and after a 

certain treatment. (For example, a blood test before and after 

receiving a medical treatment; or a subject matter test before and 

after a lesson on that subject) 

• This poses the same problem as Example 1: The "before" test 

results and the "after" test results for each subject are not 

independent, because they come from the same subject. 

• The solution is the same: analyze the difference in scores. 

• Example 2 is a special case of what is called repeated 

measures: some measurement is taken more than once on the 

same unit.  

o Because repeated measures on the same unit are not 

independent, the analysis of such data needs a method 

that takes this lack of independence into account.  

o There are various ways to do this; just which one is best 

depends on the particular situation. 
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Similar Problem: Hierarchical (multilevel) situations may violate 

model assumptions of independence  

Example: Researchers are studying how well scores on a 

standardized eighth grade math exam predict performance on an 

Algebra I end-of-course exam for ninth-grade students.  

• They have data from an entire school district.  

• They propose to analyze it by simple linear regression. 

• However, standard regression methods of inference assume 

that observations are uncorrelated, whereas observations 

from students in the same school can be expected to be 

correlated. 

• Instead, the researchers need to use a multilevel (also called 

hierarchical) model that takes into account that observations 

from the same school may be correlated. 
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C. Inappropriately Designating an Effect as Fixed, Variable, or 

Random 

In Analysis of Variance and Multilevel Modeling, there are two 

types of factors: fixed effect and random effect.  

• Fixed effect factors and random effect factors are analyzed 

differently, so it’s important to classify a factor correctly. 

• Confusing the matter further, different definitions of “fixed” 

and “random” effects are used by different people. 

Correct classification of a factor as fixed or random depends on  

• the context of the problem,  

• the questions of interest, and  

• how the data are gathered, and 

• the method of analysis  
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1. Fixed and random effects for Analysis of Variance: 

 

Fixed effect factor in Analysis of Variance: Data has been 

gathered from all the levels of the factor that are of interest. 

Example: The purpose of an experiment is to compare the 

effects of three specific dosages of a drug on the response.  

 

• "Dosage" is the factor.  

 

• The three specific dosages in the experiment are the 

levels. 

 

• There is no intent to say anything about other dosages. 

 

• Therefore this is a fixed factor. 

 

• The analysis will estimate the effect of each of the three 

dosages. 
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Random effect factor for Analysis of Variance:  

• The factor has many possible levels.  

• All possible levels are of interest. 

• Only a random sample of levels is included in the data. 

• The analysis will estimate the variability of effects of the 

factor as levels vary, but not effects of specific levels. 

Example: A large manufacturer is interested in studying the 

effect of machine operator on the quality of the final product. 

The researcher selects a random sample of operators from the 

large number of operators at the manufacturer’s factories and 

collects data on just these operators.  

 

• The factor is "operator."  

 

• Each operator is a level of the factor.  

 

• Since interest is not just in the operators for whom data is 

gathered, this is a random factor. 

 

• The analysis will not estimate the effect of each of the 

operators in the sample, but will instead estimate the 

variability attributable to the factor "operator". 

 

(See Appendix for more discussion)  
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The appropriate statistical analysis depends on whether the 

factor is treated as fixed or as random. That is, fixed and random 

effects require different models 

• Consequently, inferences may be incorrect if the factor is 

classified inappropriately.  

• Mistakes in classification are most likely to occur when more 

than one factor is considered in the study. 

Example: Two surgical procedures are being compared.  

• Patients are randomized to treatment.  

• Five different surgical teams are used.  

• To prevent possible confounding of treatment and surgical 

team, each team is trained in both procedures, and each team 

performs equal numbers of surgery of each of the two types.  

• Since the purpose of the experiment is to compare the 

procedures, the intent is to generalize to other surgical teams.  

• Thus surgical team should be considered as a random factor, 

not a fixed factor. 
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Comments:  

• This example can help understand why inferences might be 

different for the two classifications of the factor: Asserting 

that there is a difference in the results of the two procedures 

regardless of the surgical team is a stronger statement than 

saying that there is a difference in the results of the two 

procedures just for the teams in the experiment. 

• Technically, the levels of the random factor (in this case, the 

five surgical teams) used in the experiment should be a 

random sample of all possible levels.  

o In practice, this is usually impossible, so the random 

factor analysis is usually used if there is reason to 

believe that the teams used in the experiment could 

reasonably be a random sample of all surgical teams 

who might perform the procedures.  

o However, this assumption needs careful thought to 

avoid possible bias.  

o For example, the conclusion would be sounder if it 

were limited to surgical teams that were trained in both 

procedures in the same manner and to the same extent, 

and who had the same surgical experiences, as the five 

teams actually studied. 
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2. Fixed and random effects for Multilevel (Hierarchical) 

Modeling: 

 

In this context, definitions vary, but one common one is that a fixed 

effect is one that is the same for all units within the same grouping, 

whereas a random effect is one that is allowed to vary between 

units of the same grouping.  

 

Simple example: Suppose we’re using a linear model for the 

heights of a group of children.  

• Since some children are inherently taller than others, it may 

be appropriate to allow different intercepts for different 

children.  

• This would give a model  

 

 hij =  !j + #Ai + $ij, 

 

where hij is the height of child j at age Ai.  

• In this example, ! is called a random effect and # is called a 

fixed effect.  

 

Note:  

i. In this context, the "j’s are estimated, and we’re not interested in 

levels other than the ones corresponding to the children in the 

study. This contrasts with the use of “random effect” in ANOVA. 

 

ii. Some people use the terminology variable effect or varying 

effect rather than random effect in this context. That helps avoid 

the confusion with the use of “random effect” in ANOVA. 

 

iii. See http://andrewgelman.com/2005/01/25/why_i_dont_use/ for 

more detail on the various ways the terms “fixed” and “random” 

are used.   
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D. Analyzing Data without Regard to How They Were 

Collected 

Using a two-sample t-test when observations are paired (see 

above) is one example of this. Here’s another: 

 

Example: [See Potcner and Kowalski (2004) for data and details.] 

An experiment was conducted to study the effect of two factors 

(pretreatment and stain) on the water resistance of wood.  

• Two types of pretreatment and four types of stain were 

considered.  

• For reasons of practicality and economy, the experiment was 

conducted with a split-plot design as follows:  

o Six entire boards were the whole plots.  

o One pretreatment was applied to each board, with the 

two pretreatments randomly assigned to the six boards 

(three boards per pretreatment).  

o Then each pre-treated board was cut into four smaller 

pieces of equal size (these were the split-plots).  

o The four pieces from each entire board were randomly 

assigned to the four stains.  

o The water resistance of each of the 24 smaller pieces 

was measured; this was the response variable. 

• The following chart shows the p-values of the three 

significance tests involved if the correct split-plot analysis is 

used, and also if an incorrect analysis (assuming a crossed 

design, with the 6 treatment combinations randomly assigned 

to the 24 smaller pieces of wood, with 4 small pieces per 

treatment combination) is used.  

• Note that the conclusions from the two analyses would be 

quite different!  
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p-values Correct (Split Plot) 

Analysis 

Incorrect 

(Crossed Design) 

Analysis 

Interaction 0.231 0.782 

Pretreatment 0.115 0.002 

Stain 0.006 0.245 

 

 

Additional lessons to learn from this example: 

• If you’re using data collected by someone else, be sure to 

find out how it was collected; that might affect how you 

need to analyze it. 

• If you’re making data available to others, be sure to 

include a description of how the data was obtained.  

 

 

Some of the many considerations to take into account in deciding 

on an appropriate method of analysis include: 

• The sampling or randomization method  

• Whether or not there was blocking in an experimental design 

• Whether factors are nested or crossed 

• Whether factors are fixed or random 

• Pseudoreplication (See below)  
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E. PSEUDOREPLICATION  

The term pseudoreplication was coined by Hurlbert (1984,p. 187) 

to refer to 

 "the use of inferential statistics to test for treatment effects 

with data from experiments where either treatments are not 

replicated (though samples may be) or replicates are not 

statistically independent."
 

 

His paper concerned ecological field experiments, but 

pseudoreplication can occur in other fields as well. 

 

In this context, replication refers to having more than one 

experimental (or observational) unit with the same treatment. Each 

unit with the same treatment is called a replicate.  

 

Note: There are other uses of the word replication -- for 

example, repeating an entire experiment is also called 

replication; each repetition of the experiment is called a 

replicate. This meaning is related to the one given above: If 

each treatment in an experiment has the same number r of 

replicates (in the sense given above), then the experiment can be 

considered as r replicates (in the second sense) of an experiment 

where each treatment is applied to only one experimental unit. 
 

Heffner et al (1996, p. 2558) distinguish a pseudoreplicate from a 

true replicate, which they characterize as 

 

 "the smallest experimental unit to which a treatment is 

independently applied." 

 

 

 

 

 



 55 

Most models for statistical inference require true replication.  

• True replication permits the estimation of variability within a 

treatment.  

• Without estimating variability within treatments, it is 

impossible to do statistical inference.  

 

Illustration: Consider comparing two drugs by trying drug A on 

person 1 and drug B on person 2.   

• Drugs typically have different effects in different people.  

• So this simple experiment will give us no information about 

generalizing to people other than the two involved.  

• But if we try each drug on several people, then we can obtain 

some information about the variability of each drug, and use 

statistical inference to gain some information on whether or 

not one drug might be more effective than the other on 

average. 
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True replicates are often confused with repeated measurements or 

with pseudoreplicates. The following illustrate some of the ways 

this can occur. 

 

Examples: 

 

1. Suppose a blood-pressure lowering drug is administered to a 

patient, and then the patient's blood pressure is measured twice.  

• This is a repeated measurement, not a replication.  

• It can give information about the uncertainty in the 

measurement process, but not about the variability in the 

effect of the drug.  

• On the other hand, if the drug were administered to two 

patients, and each patient's blood pressure was measured 

once, we can say the treatment has been replicated, and the 

replication might give some information about the variability 

in the effect of the drug. 

 

2. A researcher is studying the effect on plant growth of different 

concentrations of CO2 in the air.   

• He needs to grow the plants in a growth chamber so that 

the CO2 concentration can be set.  

• He has access to only two growth chambers, but each one 

will hold five plants.   

• However, since the five plants in each chamber share 

whatever conditions are in that chamber besides the CO2 

concentration (and in fact may also influence each other), the 

individual plants do not constitute independent replicates – 

they’re pseudoreplicates.  

• The growth chambers are the experimental units: the 

treatments (CO2 concentrations) are applied to the growth 

chambers, not to the plants independently.  
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3. Two fifth-grade math curricula are being studied.  

• Two schools have agreed to participate in the study.  

• One is randomly assigned to use curriculum A, the other to 

use curriculum B.  

• At the end of the school year, the fifth-grade students in each 

school are tested and the results are used to do a statistical 

analysis comparing the two curricula.  

• There is no true replication in this study; the students are 

pseudo-replicates.  

• The schools are the experimental units; they, not the students, 

are randomly assigned to treatment.  

• Within each school, the test results (and the learning) of the 

students in the experiment are not independent; they’re 

influenced by the teacher and by other school-specific factors 

(e.g., previous teachers and learning, socioeconomic 

background of the school, etc.).  
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Consequences of doing statistical inference using 

pseudoreplicates rather than true replicates 

 

Variability will probably be underestimated. This will result in: 

• Confidence intervals that are too small. 

• An inflated probability of a Type I error (falsely rejecting a 

true null hypothesis).  

Comments  

• Note that in Example 2, there’s no way to distinguish 

between effect of treatment and effect of growth chamber; 

thus the two factors (treatment and growth chamber) are 

confounded. Similarly, in Example 3, treatment and school 

are confounded. 

• Example 3 may also be seen as applying the two treatments 

to two different populations (students in one school and 

students in the other school) 

• Observational studies are particularly prone to 

pseudoreplication. 

• Regression can sometimes partially account for lack of 

replication, provided data are close enough to each other.  

o The rough idea is that the responses for nearby values 

of the explanatory variables can give some estimate of 

the variability.  

o However, having replicates is better. 

(See Appendix for suggestions on dealing with pseudoreplication.) 
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F. MISTAKES IN REGRESSION 

There are many common mistakes involved in regression! 

Only one will be discussed here; some others will be listed at the 

end of these notes, with a web reference to more discussion. 

Overfitting 

With four parameters I can fit an elephant and with five I 

can make him wiggle his trunk. 

John von Neumann 

If we have n distinct x values and corresponding y values for each, 

it is possible to find a curve going exactly through all n resulting 

points (x, y); this can be done by setting up a system of equations 

and solving simultaneously.  

• But this is not what regression methods typically are 

designed to do.  

• Most regression methods (e.g., least squares) estimate 

conditional means of the response variable given the 

explanatory variables.   

• They’re not expected to go through all the data points. 
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For example, with one explanatory variable X (e.g., height) and 

response variable Y (e.g., weight), if we fix a value x of X, we 

have a conditional distribution of Y given X = x (e.g., the 

conditional distribution of weight for people with height x).  

• This conditional distribution has an expected value 

(population mean), which we will denote E(Y|X = x) (e.g., 

the mean weight of people with height x).  

• This is the conditional mean of Y given X = x. It depends on 

x -- in other words, E(Y|X = x) is a mathematical function of 

x.  

In least squares regression (and most other kinds of regression), 

one of the model assumptions is that the conditional mean function 

has a specified form.  

• Then we use the data to find a function of x that 

approximates the conditional mean function E(Y|X = x).  

• This is different from, and subtler (and harder) than, finding a 

curve that goes through all the data points. 
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Example: To illustrate, I’ve used simulated data:  

• Five points were sampled from a joint distribution where the 

conditional mean E(Y|X = x) is known to be x2, and where 

each conditional distribution Y|(X = x) is normal with 

standard deviation 1.  

• I used least squares regression to estimate the conditional 

means by a quadratic curve y = a +bx + cx2. That is, I used 

least squares regression, with  

 

E(Y|X=x) = ! +"x + #x2 

 

as one of the model assumptions, to obtain estimates a, b, and 

c of !, ", and # (respectively), based on the data. 

o There are other ways of expressing this model 

assumption, for example,  

  y = ! +"x + #x2 + $, 
 or 

  yi = ! +"xi + #xi
2 + $i 

 

The graph below shows: 

• The five data points in red (one at the left is mostly hidden by 

the green curve) 

• The curve y = x2 of true conditional means (black) 

• The graph of the calculated regression equation (in green).  
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Note that: 

• The points sampled from the distribution do not lie on the 

curve of means (black).  

• The green curve is not exactly the same as the black curve, 

but is close.  

• In this example, the sampled points were mostly below the 

curve of means.  

• Since the regression curve (green) was calculated using just 

the five sampled points (red), the red points are more evenly 

distributed above and below it (green curve) than they are in 

relation to the real curve of means (black).  
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Note: In a real world example, we would not know the conditional 

mean function (black curve) -- and in most problems, would 

not even know in advance whether it is linear, quadratic, or 

something else.  

• Thus, part of the problem of finding an appropriate 

regression curve is figuring out what kind of function it 

should be. 

 

Continuing with this example, if we (naively) try to get a "good 

fit" by trying a quartic (fourth degree) regression curve -- that is, 

using a model assumption of the form  

 E(Y|X=x) = ! +"1x + "2x
2 +  "3x

3 +  "4x
4,  

we get the following picture: 
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You can barely see any of the red points in this picture.  

• That’s because they’re all on the calculated regression curve 

(green).  

• We’ve found a regression curve that fits all the data!  

• But it’s not a good regression curve -- because what we’re 

really trying to estimate by regression is the black curve 

(curve of conditional means).  

• We’ve done a rotten job of that; we’ve made the mistake of 

over-fitting. We’ve fit an elephant, so to speak. 

 

If we had instead tried to fit a cubic (third degree) regression curve 

-- that is, using a model assumption of the form  

 E(Y|X=x) = ! +"1x + "2x
2 +  "3x

3,  

we’d get something more wiggly than the quadratic fit and less 

wiggly than the quartic fit.  

• However, it would still be over-fitting, since (by 

construction) the correct model assumption for these data 

would be a quadratic mean function.  

 

See the Appendix for suggestions on trying to avoid overfitting. 
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Other Common Mistakes in Using Regression  

For further discussion of these mistakes, see links from 

http://www.ma.utexas.edu/users/mks/statmistakes/regression.h

tml 

• Using Confidence Intervals when Prediction Intervals Are 

Needed. 

• Over-interpreting High R
2
 

• Mistakes in Interpretation of Coefficients 

o Interpreting a coefficient as a rate of change in Y instead 

of as a rate of change in the conditional mean of Y. 

o Not taking confidence intervals for coefficients (i.e., 

uncertainty of estimation of coefficients) into account 

o Interpreting a coefficient that’s not statistically significant 

o Interpreting coefficients in multiple regression with the 

same language used for a slope in simple linear regression. 

o Neglecting the issue of multiple inference when dealing 

with more than one coefficient in the same data set. 

 

• Mistakes in Selecting Terms 

 

• Assuming linearity is preserved when variables are dropped. 

(See also Appendix.) 

 

•  Problems involving stepwise model selection procedures. 
 

See also http://www.jerrydallal.com/LHSP/important.htm for 

another common mistake in using regression. 
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If you have further questions, feel free to: 

 

Consult my website Common Mistakes in Using Statistics (table of 

contents at 

http://www.ma.utexas.edu/users/mks/statmistakes/TOC.html) 

 

Email me at mks@math.utexas.edu (or through this class’s Canvas 

site) 

 

Leave a comment on my blog, Musings on Using and Misusing 

Statistics, http://www.ma.utexas.edu/blogs/mks/ 

 

 


