
 1 

 

 

 

 

 

 

 

 

 

NOTES FOR SUMMER STATISTICS INSTITUTE COURSE 

 

 COMMON MISTAKES IN STATISTICS –  

SPOTTING THEM AND AVOIDING THEM 

 

Day 3: Type I and II Errors, Power, and 

 the File Drawer Problem 

 

MAY 23 - 26, 2016 

 

Instructor: Martha K. Smith 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

CONTENTS OF DAY 3  

 

I. Catch-up and review from yesterday as needed 

 

II. Type II error        3 

 

III. Considering both types of error together   5 

 

IV. Deciding what significance level to use   9 

 

V. Power of a statistical procedure    14 

 Factors affecting power    20 

  Significance level   20 

  Sample size    21 

  Variance     24 

  Experimental design   26 

 Calculating sample size    27 and appendix 

 Detrimental effects of underpowered 

    or overpowered studies    28 

  Winner’s Curse (AKA Statistical Significance Filter) 

       30 

  Type M and S errors  32 

  Caution on different meanings of “replication” 

       34 

  Overpowered studies  36 

     

VI. Common mistakes involving power   37 

 

VII. The File Drawer Problem (“Publication Bias”)  

      (as time permits) 46 

 

 (If time permits, we will start on some of the material listed for 

Day 4) 

 

 



 3 

II. TYPE II ERROR 

(Recall: Falsely rejecting a true null hypothesis is called a Type I 

error.) 

Not rejecting the null hypothesis when in fact the alternate 

hypothesis is true is called a Type II error. 

• Example 2 below provides a situation where the concept 

of Type II error is important.  

New complication: "The alternate hypothesis" in the definition of 

Type II error may refer to the alternate hypothesis in a hypothesis 

test (a “general” alternate hypothesis), or it may refer to a 

"specific" alternate hypothesis. 

Example/Elaboration: In a t-test for a sample mean !, with null 

hypothesis "! = 0" and alternate hypothesis "! > 0":  

• We might talk about the Type II error relative to the 

general alternate hypothesis "! > 0". 

• Or we might talk about the Type II error relative to the 

specific alternate hypothesis "! = 1” (or " ! = 0.5”, or 

…).  

• Note that the specific alternate hypothesis is a special case 

of the general alternate hypothesis. 
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In practice, people usually work with Type II error relative to a 

specific alternate hypothesis.  

• In this situation, the probability of Type II error relative to the 

specific alternate hypothesis is often called ".  

• In other words, " is the probability of making the wrong 

decision when the specific alternate hypothesis is true.  

• The specific alternative is considered for two reasons: 

1.  It’s more feasible to calculate " than the probability of 

Type II error relative to the general alternative. 

2. What’s usually important is the ability to detect a 

difference of practical importance, rather than any 

difference however minute. 

• See the discussion of power below for related detail.  
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III: CONSIDERING BOTH TYPES  

OF ERROR TOGETHER 

  

The following table summarizes Type I and Type II errors: 

 Truth  

(for population studied) 

Null 

Hypothesis 

True 

Null 

Hypothesis 

False 

     

Decision   

(based on 

sample) 

Reject Null 

Hypothesis 

Type I Error Correct 

Decision 

Don’t reject 

Null 

Hypothesis 

Correct 

Decision 

Type II 

Error 

 

Analogy: Results of a criminal trial.  

• The “null hypothesis” is "defendant is not guilty."  

• The “alternate hypothesis” is "defendant is guilty." 

• A Type I error would correspond to convicting an innocent 

person. 

• Type II error would correspond to setting a guilty person free.  

• The analogous table would be: 
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 Truth  

Not Guilty Guilty 

  

 

 

Verdict 

 

Guilty 

Type I Error -- 

Innocent 

person goes to 

jail (and maybe 

guilty person 

goes free) 

 

Correct 

Decision 

 

Not Guilty 

 

Correct 

Decision 

Type II 

Error -- 

Guilty 

person goes 

free 

 

Note:  

• This could be more than just an analogy if the verdict hinges 

on statistical evidence (e.g., a DNA test), and where rejecting 

the null hypothesis would result in a verdict of guilty, and not 

rejecting the null hypothesis would result in a verdict of not 

guilty. 

• This analogy/example shows that sometimes a Type I error 

can be more serious than a Type II error. (However, this is 

not always the case). 
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The following diagram illustrates both the Type I error and the 

Type II error  

• against the specific alternate hypothesis "! =1"  

• in a hypothesis test for a population mean !,  

• with  

o null hypothesis "! = 0,"   

o alternate hypothesis "! > 0",  

o and significance level #= 0.05.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 8 

In the diagram, 

• The blue (leftmost) curve is the sampling distribution of the 

test statistic assuming the null hypothesis "! = 0." 

• The green (rightmost) curve is the sampling distribution of 

the test statistic assuming the specific alternate hypothesis "! 

=1".  

• The vertical red line shows the cut-off for rejection of the 

null hypothesis:  

o The null hypothesis is rejected for values of the test 

statistic to the right of the red line (and not rejected for 

values to the left of the red line). 

• The area of the diagonally hatched region to the right of the 

red line and under the blue curve is the probability of type I 

error (#). 

• The area of the horizontally hatched region to the left of the 

red line and under the green curve is the probability (") of 

Type II error against the specific alternative.  

! What happens to the Type II error probability (") if we: 

 

a.  increase #?  

 

b. decrease #?  
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IV. DECIDING WHAT SIGNIFICANCE LEVEL TO USE 

 

This should be done before analyzing the data -- preferably before 

gathering the data. This is important for (at least) two reasons:  

 

1) The significance level desired is one criterion in deciding on an 

appropriate sample size.  

• See discussion of Power below. 

 

2) If more than one hypothesis test is planned, additional 

considerations need to be taken into account.  

• See discussion of Multiple Inference below. 

 

The choice of significance level should be based on the 

consequences of Type I and Type II errors: 

 

1. If the consequences of a Type I error are serious or expensive, a 

very small significance level is appropriate. 

 

Example 1: Two drugs are being compared for effectiveness in 

treating the same condition.  

o Drug 1 is very affordable, but Drug 2 is extremely 

expensive.   

o The null hypothesis is “both drugs are equally effective.”  

o The alternate is “Drug 2 is more effective than Drug 1.” 

o In this situation, a Type I error would be deciding that 

Drug 2 is more effective, when in fact it is no better than 

Drug 1, but would cost the patient much more money.  

o That would be undesirable from the patient’s perspective, 

so a small significance level is warranted. 
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2. If the consequences of a Type I error are not very serious (and 

especially if a Type II error has serious consequences), then a 

larger significance level is appropriate. 

Example 2: Two drugs are known to be equally effective for a 

certain condition.  

o They’re also each equally affordable.  

o However, there is some suspicion that Drug 2 causes a 

serious side effect in some patients, whereas Drug 1 has 

been used for decades with no reports of serious side 

effects. 

o The null hypothesis is "the incidence of serious side effects 

in both drugs is the same".  

o The alternate is "the incidence of serious side effects in 

Drug 2 is greater than that in Drug 1."  

o Falsely rejecting the null hypothesis when it is in fact true 

(Type I error) would have no great consequences for the 

consumer. 

o But a Type II error (i.e., failing to reject the null 

hypothesis when in fact the alternate is true, which would 

result in deciding that Drug 2 is no more harmful than 

Drug 1 when it is in fact more harmful) could have serious 

consequences from a consumer and public health 

standpoint.  

o So setting a large significance level is appropriate.  
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Example 3: Some vaccines are made from weakened strains 

of the pathogen causing the disease in question.  

o In these cases, each batch of the vaccine needs to be tested 

for virulence (that is, the virus needs to be tested to be sure 

it is weakened enough that it does not cause the disease, or 

only causes a case that is minor but still results in 

immunity).  

o The null hypothesis would be “the vaccine does not 

produce serious disease.” 

o The alternate hypothesis would be “the vaccine does 

produce serious disease” 

o A type II error here would have serious consequences,. 

o Thus it is important to have a high Type II error rate for 

such tests.  

o Indeed, in these cases, the Type II error rate is often 

set at 99%, whereas in much research, a Type II 

error rate of 80% is considered acceptable.  
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Comments:  

 

• Neglecting to think adequately about possible consequences of 

Type I and Type II errors (and deciding acceptable levels of 

Type I and II errors based on these consequences) before 

conducting a study and analyzing data is a common mistake in 

using statistics.  

 

• Sometimes there are serious consequences of each alternative, 

so compromises or weighing priorities may be necessary.  

o The trial analogy illustrates this well: Which is better or 

worse, imprisoning an innocent person or letting a guilty 

person go free?  

o This is a value judgment; value judgments are often involved 

in deciding on significance levels.  

o Trying to avoid the issue by always choosing the same 

significance level is itself a value judgment.  

• Different people may decide on different standards of evidence. 

o This is another reason why it’s important to report p-values 

even if you set a significance level.  

o It’s not enough just to say, “significant at the .05 level,” 

“significant at the .01 level,” etc. Unfortunately, reporting  p-

values this way is a very common mistake. 
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• Sometimes different stakeholders have different interests that 

compete (e.g., in the second example above, the developers of 

Drug 2 might prefer to have a smaller significance level.) 

o This is another reason why it’s important to report p-values 

in publications. 

• See Wuensch (1994) for more discussion of considerations 

involved in deciding on reasonable levels for Type I and Type II 

errors.  

• See also the discussion of Power below.  

• Similar considerations hold for setting confidence levels for 

confidence intervals. 

• For discussion of the types of cost-benefit analysis that might go 

into medical decisions, see the following and reference therein: 

o http://andrewgelman.com/2015/09/17/26612/ 

o http://papers.ssrn.com/sol3/papers.cfm?abstract_id=26415

47 

o http://content.healthaffairs.org/content/24/1/93.full 
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V: POWER OF A STATISTICAL PROCEDURE 

Overview   

 

The power of a hypothesis test can be thought of as the probability 

that the test will detect a true difference of a specified type.  

• As in talking about p-values and confidence levels, the 

reference category for "probability" is the sample. 

• Thus, power is the probability that a randomly chosen sample  

o satisfying the model assumptions  

o will give evidence of a difference of the specified type 

when the procedure is applied,  

o if the specified difference does indeed occur in the 

population being studied.  

• Note that power is a conditional probability: the probability 

of detecting a difference, if indeed the difference does exist. 
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In many real-life situations, there are reasonable conditions that 

we’d like to be able to detect, and others that would not make a 

practical difference.  

Examples: 

• If you can only measure the response to within 0.1 units, it 

doesn't really make sense to worry about falsely rejecting 

a null hypothesis for a mean when the actual value of the 

mean is within less than 0.1 units of the value specified in 

the null hypothesis. 

• Some differences are of no practical importance -- for 

example, a medical treatment that extends life by 10 

minutes is probably not worth it.  

• In testing for vaccine virulence, it is very important to be 

able to detect virulence, so high power is especially 

important. 

 

In cases like these, neglecting power could result in one or more of 

the following: 

• Doing more work, going to more expense, or subjecting 

people to more risk than necessary 

• Obtaining results that are meaningless 

• Obtaining results that don't answer the question of interest 

• Serious negative consequences. 
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Elaboration 

 

The power of a hypothesis test is defined as: 

 

The probability (again, the reference category is “samples”) 

of rejecting the null hypothesis under a specified condition.  

 

Example: For a one-sample t-test for the mean of a population, 

with null hypothesis H0: ! = 100, you might be interested in the 

probability of rejecting H0 when ! $ 105, or when |! - 100| > 5, 

etc.  

As with Type II Error, we may think of power for a hypothesis test 

in terms of power against a specific alternative rather than against 

a general alternative. 
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Example: If we’re performing a hypothesis test for the mean of a 

population, with null hypothesis H0: ! = 0 and alternate hypothesis 

! > 0, we might calculate the power of the test against the specific 

alternative H1: ! = 1, or against the specific alternative H3: ! = 3, 

etc.  

 

The picture below shows three sampling distributions for our test 

statistic: 

• The sampling distribution assuming H0 (blue; leftmost curve) 

• The sampling distribution assuming H1 (green; middle curve) 

• The sampling distribution assuming H3 (yellow; rightmost 

curve) 

The red line marks the cut-off corresponding to a significance level 

# = 0.05.  

 

!Where would we reject/not reject the null hypothesis? 
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From the above, we conclude (how?) that: 

• The area under the blue curve to the right of the red line is 

0.05. 

• The area under the green curve the to right of the red line is 

the probability of rejecting the null hypothesis (! = 0) if the 

specific alternative H1: ! = 1 is true.  

o In other words, this area is the power of the test against 

the specific alternative H1: ! = 1.  

o We can see in the picture that in this case, the power is 

greater than 0.05, but noticeably less than 0.50. 

• Similarly, the area under the yellow curve the to right of the 

red line is the power of the test against the specific 

alternative H3: ! = 3.  

o Notice that the power in this case is much larger than 

0.5. 

This illustrates the general phenomenon that the farther an 

alternative is from the null hypothesis, the higher the power of the 

test to detect it.   

!See https://istats.shinyapps.io/power/ [use population mean] for 

an interactive illustration. 
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Note:  

• For most tests, it is possible to calculate the power against a 

specific alternative, at least to a reasonable approximation. 

(More below and in Appendix) 

• It’s not usually possible to calculate the power against a 

general alternative, since the general alternative is made up 

of infinitely many possible specific alternatives.  

 

Power and Type II Error 

 

Recall: The Type II Error rate " of a test against a specific alternate 

hypothesis test is represented in the diagram above as the area 

under the sampling distribution curve for that alternate hypothesis 

and to the left of the cut-off line for the test (cf p. 7). Thus  

"  + (Power of a test against a specific alternate hypothesis)  

 = total area under sampling distribution curve  

 = 1,  

so 

Power = 1 - " 

 

Illustration: https://istats.shinyapps.io/power/ [use population 

mean] 
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Factors that Affect the Power of a Statistical Procedure 

 

Power depends on several factors in addition to the difference to 

be detected. 

1. Significance Level 

This can be seen in the diagram illustrating power:  

• Increasing the significance level # will move the red line to 

the left, and hence will increase power.  

• Similarly, decreasing significance level decreases power.  

• See https://istats.shinyapps.io/power/ [use population mean] 

for an interactive demonstration 
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2. Sample Size 

Example: The pictures below each show the sampling distribution 

for the mean under the null hypothesis µ = 0 (blue -- on the left in 

each picture) together with the sampling distribution under the 

alternate hypothesis µ = 1 (green -- on the right in each picture), 

but for different sample sizes.  

• The first picture is for sample size n = 25; the second picture 

is for sample size n = 100.  

o Why are the curves in the second graph skinnier? 

• Note that both graphs are in the same scale. In both pictures, 

the blue curve is centered at 0 (corresponding to the null 

hypothesis) and the green curve is centered at 1 

(corresponding to the alternate hypothesis). 

• In each picture, the vertical red/orange line is the cut-off for 

rejection with alpha = 0.05 (for a one-tailed test) -- that is, in 

each picture, the area under the blue curve to the right of the 

line is 0.05.  

• In each picture, the area under the green curve to the right of 

the red line is the power of the test against the alternate 

depicted. Note that this area is larger in the second picture 

(the one with larger sample size) than in the first picture.  
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This illustrates the general situation:  

 Larger sample size gives larger power.  

The reason is essentially the same as in the example: Larger 

sample size gives a narrower sampling distribution, which means 

there is less overlap in the two sampling distributions (for null and 

alternate hypotheses). 

!See https://istats.shinyapps.io/power/ [use population mean] for 

an interactive demonstration of the interplay between sample size 

and power. 

Note: Sample size needed to give desired power typically increases 

at an increasing rate as power increases. (e.g., in the above 

example, increasing the sample size by a factor of 4 increases the 

power by a factor of about 2; the graphics aren't accurate enough to 

show this well.) 
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3. Variance 

Power also depends on variance: smaller variance yields higher 

power.  

 

Example: The pictures below each show the sampling distribution 

for the mean under the null hypothesis µ = 0 (blue -- on the left in 

each picture) together with the sampling distribution under the 

alternate hypothesis µ = 1 (green -- on the right in each picture), 

both with sample size 25, but for different standard deviations of 

the underlying distributions. (Different standard deviations might 

arise from using two different measuring instruments, or from 

considering two different populations.) 

• In the first picture, the standard deviation is 10; in the second 

picture, it is 5.  

• Note that both graphs are in the same scale. In both pictures, 

the blue curve is centered at 0 (corresponding to the the null 

hypothesis) and the green curve is centered at 1 

(corresponding to the alternate hypothesis). 

• In each picture, the red/orange line is the cut-off for rejection 

with alpha = 0.05 (for a one-tailed test) -- that is, in each 

picture, the area under the blue curve to the right of the line is 

0.05.  

• In each picture, the area under the green curve to the right of 

the line is the power of the test against the alternate depicted. 

Note that this area is larger in the second picture (the one 

with smaller standard deviation) than in the first picture.  
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!See https://istats.shinyapps.io/power/  [use population mean]for 

an interactive demonstration. [Try mean 1, st deviations 1 and 5] 

Note: Variance can sometimes be reduced by using a better 

measuring instrument, by restricting to a subpopulation (but then 

be careful not to extrapolate!], or by choosing a better 

experimental design (see below). 
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4. Experimental Design 

Power can sometimes be increased by adopting a different 

experimental design that has lower error variance. For example, 

stratified sampling or blocking can often reduce error variance and 

hence increase power. However, 

• The power calculation will depend on the experimental 

design.  

o Calculating power or sample size for the wrong 

experimental design is a common mistake 

• The statistical analysis will depend on the experimental 

design. (To be discussed tomorrow.) 

• For more on designs that may increase power, see Lipsey 

(1990) or McClelland (2000) 
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Calculating Sample Size to Give Desired Power: The dependence 

of power on sample size in principle lets us figure out beforehand 

the sample size needed to detect a specified difference, with a 

specified power, at a given significance level, if that difference is 

really there.  

• In practice, details on figuring out sample size will vary from 

procedure to procedure. See the Appendix for discussion of 

some of the considerations involved.  

• In particular: Power calculations need to take into account 

the specifics of the statistical procedure. 

o For example, there are many F-tests; they involve 

different calculations of the F-statistic, and thus require 

different power and sample size calculations. 

o In particular, there are many types of ANOVA; the test 

statistic depends on the experimental design, so power 

calculation depends on the experimental design. 
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Detrimental Effects of  

Underpowered or Overpowered Studies 
 

Underpowered studies: 

 

The most straightforward consequence of underpowered studies 

(i.e., those with low probability of detecting an effect of practical 

importance) is that effects of practical importance may not be 

detected.  

 

But there’s another, more subtle, but important consequence:  

 

Underpowered studies result in a larger variance of the 

estimates of the parameter being estimated.  

• For example, in estimating a population mean, the 

sampling distributions of sample means in studies with 

low power have high variance.  

• In other words, the sampling distribution of sample 

means is wide.  
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This is illustrated in the following picture:  

• It shows the sampling distributions of the mean for a variable 

with zero mean when sample size n = 25 (red/orange) and 

when n = 100 (blue).  

• The vertical lines toward the right of each sampling 

distribution show the cut-off for a one-sided hypothesis test 

with null hypothesis ! = 0 and significance level alpha = .05. 

• Notice that:  

o The sampling distribution for the smaller sample size (n 

= 25) is wider than the sampling distribution for the 

larger sample size ( n = 100). 

o Thus, when the null hypothesis is rejected with the 

smaller sample size n = 25, the sample mean tends to 

be noticeably larger than when the null hypothesis is 

rejected with the larger sample size n = 100.  

 

 

 

 

 30 

This reflects the general phenomenon that studies with low 

power have a larger chance of exhibiting a large effect than 

studies with high power. 

• This may suggest an exaggerated effect, or even one that is not 

there.  

In particular, when there is a Type I error (falsely rejecting the null 

hypothesis), the effect will appear to be stronger with low power 

than with a high power. 

• This phenomenon is sometimes called “The winner’s 

curse,” or “The Proteus phenomenon,” or “The statistical 

significance filter.” 

• Thus, when studies are underpowered, the literature is 

likely to be inconsistent and often misleading.  

• This problem is increased because of the “File Drawer 

Problem” (discussed below). 

• Recall that low power may result from: 

o Small sample size 

o Small alpha level 

o Large variance 
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The effect of the statistical significance filter shows up in the 

recent Open Science Collaboration initiative to replicate 100 

published psychology studies (Open Science Collaboration 2015):  

The mean effect size of the original studies was 0.403, 

whereas the mean effect size of the replication studies was 

0.197.  

(For an interesting popular press article about the Open Science 

Collaborative replication study, see McArdle (2015)) 

 

Maxim: The statistical significance filter suggests the maxim: 

If a result if surprising, it’s probably either false or the 

effect is smaller than suggested. 
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In response to the winner’s curse and other concerns, the terms 

Type M error and Type S error have recently been introduced as 

refinements of (or better alternatives to) the notion of Type I error: 

• A Type M error occurs when the effect size estimate 

differs in size (magnitude) from the true value of the effect 

being estimated (as shown in the above diagram, assuming 

the vertical axis shown is at effect = 0).  

o In this language, the results of the Open Science 

Collaboration paper showed that Type M errors were 

common in the original studies, and in the direction 

predicted by theory. 

• A Type S error occurs when the effect size estimate has a 

different sign than the true effect size.  

o This could be illustrated by a figure similar to the 

one above, but with vertical axis between the two 

short vertical lines. 

• Example: Gelman and Weakliem (2009) responded to a 

claim by S. Kanazawa that “Beautiful parents have more 

daughters,” by locating several more data sets appropriate 

for “testing” this claim.  

o In most of these, the proportion of girls born to 

beautiful people was less than 50%, suggesting that 

Kanazawa had a Type S error. 
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• For an alternative to power based on Type S and Type M 

errors, see Gelman and Carlin (2014). 

o This perspective has the advantage that it can be 

used either prospectively (to design a study) or 

retrospectively (to analyze an existing study). 

 

Recall from Day 2: Replicating studies is important because of 

the possibility of Type I error. 

• The possibility of Type S and Type M errors makes this 

even more important.  

• See Lehrer (2010) for a popular press article on this. 

• See Ioannidis (2014) for ideas on how to encourage 

replication and other practices that will improve the 

overall quality of research results. 

• For discussion of some recent efforts to promote 

replication studies, see Baker (2015) and the links and 

references therein. 
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Caution: The word “replication” is used in more than one way. 

Possibilities include: 

1. Repeating the original analysis with the same data 

• This could detect errors in performing the analysis. 

• It would not give any evidence on how much the result 

depends on the particular data set.  

• However, data and code are often not accessible. Example: 

Chang and Li (2015) tried to replicate 67 published 

economics studies. 

o 6 papers used confidential data, so were not 

replicable 

o 2 required software not available to the authors, so 

were not replicable by the authors 

o 29 of 35 papers in journals requiring data and code 

to be made available actually provided data and code 

o 11 of 26 papers in journals not requiring data and 

code to be made available actually provided data and 

code 

o The authors successfully replicated the main 

quantitative result of 22 of the 67 papers without 

assistance from the original authors; 7 more were 

successfully replicated with assistance from the 

original authors. 
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2. Repeating the original analysis with a new data set 

• This would help check how much the result depends on 

the particular data set. 

• But if the original choice of analysis has flaws, this would 

be silly to do. 

3. Applying an appropriate (possibly different) analysis to a new 

data set. 

• If the original choice of analysis has flaws, this plus 

applying the better analysis to the old data set is the best 

option.   

• See 

http://www.ma.utexas.edu/blogs/mks/2014/06/22/beyond-

the-buzz-on-replications-part-i-overview-of-additional-

issues-choice-of-measure-the-game-of-telephone-and-

twwadi/ and following posts for an example where this 

would be appropriate (but was not done). 
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Overpowered studies  

1. They waste resources.  

• When human or animal subjects are involved, an 

overpowered study can be considered unethical.  

o For more on ethical considerations in animal studies, 

see Festing (2010), Kilkenny et al (2010), or Nature 

Editors (2015) 

• More generally, an overpowered study may be considered 

unethical if it wastes resources. 

A common practice is to compromise between over-power and 

under-power is to try for power around .80.  

• However, power needs to be considered case-by-case, 

balancing the risks of Type I and Type II errors.  

• For example, in animal experiments, the percentage of animals 

wasted decreases as sample size increases, so performing many 

underpowered studies may waste more animals than carrying 

out one higher-powered study. (Currie, undated) 

 

2. They can produce a “statistically significant” result when the 

result is not practically significant.  
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VI: COMMON MISTAKES INVOLVING POWER 

 

1. Rejecting a null hypothesis without considering practical 

significance. 

• A study with large enough sample size will have high enough 

power to detect minuscule differences that aren’t practically 

significant.  
 

• Since power typically increases with increasing sample size, 

practical significance is important to consider. 

 

2. Accepting a null hypothesis when a result is not statistically 

significant, without taking power into account. 

 

• Power decreases with decreasing sample size.  

• Thus a small sample size may not be able to detect a 

difference that is important.  

• If there’s strong evidence that the power of a procedure will 

indeed detect a difference of practical importance, then 

accepting the null hypothesis might be appropriate. 

o However, it may be better to use a test for equivalence; 

see Appendix for references. 

• Otherwise “accepting the null hypothesis” is not appropriate 

-- all we can legitimately say then is that we fail to reject the 

null hypothesis. 
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3. Being convinced by a research study with low power. 

 

• As discussed above, underpowered studies are likely to be 

inconsistent and are often misleading. 

 

• If the author of a study hasn’t mentioned power, be 

skeptical. 

 

• If the study has mentioned power, look carefully to see 

whether the power was calculated appropriately. (See 

items 4 - 7 below.) 

 

• Remember the following quotes (from Andrew Gelman’s 

blog on the winner’s curse, 

http://andrewgelman.com/2010/10/02/the_winners_cur/): 

 

o “If an estimate is statistically significant, it’s 

probably an overestimate of the magnitude of your 

effect.” (Andrew Gelman) 
 

o “Large estimates often do not mean ‘Wow, I’ve 

found something big!’ but, rather, ‘Wow, this study 

is underpowered!’ (Jerzy Wieczorek) 
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4. Neglecting to do a power analysis/sample size calculation 

before collecting data 

• If you use a sample size that’s too small to detect a difference 

of practical significance, you may get a result that’s not 

statistically significant even though there is a difference of 

practical significance, or you may obtain a result that 

misleadingly suggests significance. 

o Thus you’ve expended considerable effort to obtain a 

result that doesn’t really answer the question of 

interest. 

• If you use a sample size that’s larger than needed to detect a 

relevant difference, you’ve also wasted resources.  

• In addition to (or instead of) standard power calculations, do 

a “design analysis” as described by Gelman and Carlin 

(2014) to take into account Type M and Type S errors. 

o Even with a standard power analysis, it may be wise to 

base sample size calculations on a hypothesized effect 

size that is determined as discussed in Gelman and 

Carlin. 

5. Neglecting to take multiple inference into account when 

calculating power. 

If more than one inference procedure is used for a data set, then 

power calculations need to take that into account. (More on this 

below.) 

• Doing a power calculation for just one inference will 

result in an underpowered study. (More on this tomorrow)  

• For more detail, see Maxwell and Kelley (2011) and 

Maxwell (2004) 
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6. Calculating power using “standardized effect sizes” rather 

than considering the particulars of the question being studied. 

"Standardized effect sizes" (examples below) are expressions 

involving more than one of the factors that needs to be taken 

into consideration in considering appropriate levels of Type I 

and Type II error in deciding on power and sample size.  

 

• Standardized effect sizes are important in meta-analysis, 

when considering studies that may use different measures 

that are on different scales. 

• However, in calculating power or sample size for a 

particular study, you’re losing information if you use 

standardized effect sizes rather than entering their 

components into the calculation individually.     
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Examples:  

i. Cohen's effect size d is the ratio of the raw effect size 

(e.g., difference in means when comparing two groups) 

and a suitable standard deviation.  

• But each of these typically needs to be considered 

individually in designing a study and determining 

power; it's not necessarily the ratio that's important. 

(See Appendix) 

ii. The correlation (or squared correlation) in regression.  

• The correlation in simple linear regression involves 

three quantities: the slope, the y standard deviation, and 

the x standard deviation.  

• Each of these three typically needs to be considered 

individually in designing the study and determining 

power and sample size.  

• In multiple regression, the situation can be even more 

complex. 

For specific examples illustrating these points, see Lenth, 

(2000) and (2001)  
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7. Confusing retrospective power and prospective power. 

• Power as defined above for a hypothesis test is also called 

prospective or a priori power.  

It’s a conditional probability, P(reject H0 | Ha), calculated 

without using the data to be analyzed.  

In fact, it’s best calculated before even gathering the data, 

and taken into account in the data-gathering plan. 

• Retrospective power is calculated after the data have been 

collected, using the data.  

Depending on how retrospective power is calculated, it might 

(or might not) be legitimate to use to estimate the power and 

sample size for a future study, but cannot legitimately be 

used as describing the power of the study from which it is 

calculated.   

Moreover, some methods of calculating retrospective power 

calculate the power to detect the effect observed in the data -- 

which misses the whole point of considering practical 

significance. These methods typically yield simply a 

transformation of p-value. See Lenth (2000) for more detail. 

See Hoenig and Heisley (2001) and Wuensch et al (2003) for 

more discussion and further references.  

• However, the “design calculations” recommended by Gelman 

and Carlin (2014) considering Type M and Type S errors can be 

done retrospectively. 
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8. Using the sample size as in a previous study for a replication. 

Assume we do a replication study with anew sample, but using the 

same sample size as the previous study.  

!Consider the power of the new study, against the effect from the 

first study. 

The picture below shows the power of the new study against the 

specific alternative that the real effect is the same as in the first 

study. 

• It’s like the picture on p. 17, but using just one specific 

alternative (so like the pictures in the demo). 

• The blue curve (on left) is the sampling distribution assuming 

H0 . 

Note: H0 is the same for both the previous and the new study. 

Since we’re assuming the new study has the same sample 

size as the previous study, this means that the sampling 

distributions under H0 are the same for both studies.  

• The dashed line shows the test statistic obtained from the 

sample used in the previous study. 

• The red curve (on right) shows the sampling distribution for the 

second study, assuming the specific alternate “effect is the 

estimate from the first study”  

Note: This sampling distribution is centered at the test 

statistic from the previous study, because that is the test 

statistic resulting from the effect of the first study, and is the 

specific alternative we are calculating power against. 
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The graph shows that the power of the second study against the 

specific alternate hypothesis that the effect the estimate found in 

the previous study is about _______, 

because ______________________________________________. 
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Real Example:  

Psychologists Brian Nosek and Matt Motyl obtained a statistically 

significant (p = 0.01) result with sample size N = 1,979.  

• However, before publishing their findings, they decided to do a 

replication study.  

• They did a power analysis and determined that a sample size of 

1300 would give power .995 to detect the effect size found in 

the original study at significance level .05.  

• The replication study gave p = .59.  

• See Nosek et al (2012) for details. 
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VII. THE FILE DRAWER PROBLEM  

(“PUBLICATION BIAS”) 

Publication bias refers to the influence of the results of a study on 

whether or not the study is published.  

 

There are various ways in which study results might influence the 

publication decision, including: 

• A result that is not statistically significant might not be 

published or even announced. 

• A result that is not practically significant might not be 

published or announced. 

• A result that does agree with the hopes or expectations of the 

researcher or sponsor might not be published. 

 

Publication bias is also called the file drawer problem, especially 

when the nature of the bias is that studies that fail to reject the null 

hypothesis (i.e., that do not produce a statistically significant 

result) are less likely to be published than those that do produce a 

statistically significant result.  

 

Cartoon: 

https://mchankins.files.wordpress.com/2013/04/filedrawer1.jpg?w

=940 

 

Older studies (see Sterling et al 1995, Song et al 2009, and 

Hopewell et al 2009) have reported indirect and/or anecdotal 

evidence of publication bias in the research literature.  
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The institution of the registry ClinicalTrials.gov in 2000 has now 

made it possible to do more direct studies of the file drawer 

problem.  

 

A recent paper (Riveros et al, 2013) examined 600 clinical trials 

that had been registered on ClinicalTrials.gov and also had results 

posted there.  Of these, 

• Half did not have publications reported on PubMed 

• There was also evidence of “selective” or “partial” 

publication bias: 

o Of the studies that had publications giving results for 

the primary outcomes, 73% listed adverse events on 

ClinicalTrials.gov, but only 45% listed adverse 

events in the published report. 

o Of these studies, 99% listed serious adverse events 

on ClinicalTrials.gov, but only 63% listed them in 

the published report. 

 

 

One common form of partial publication bias is outcome 

switching: pre-specified outcomes are not reported in the final 

report, or new outcomes were added. 

 

The COMPare project (http://compare-trials.org/) checked all 

clinical trials published in the top five medical journals from 

October 2015 to January 2016 and compared published outcomes 

with those pre-specified in the registry or protocol. In the 67 trials 

checked, they found a total of  

• 300 pre-specified outcomes not reported, and  

• 357 not-pre-specified outcomes added. 
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Consequences of the File Drawer Problem: 

1. Investigators may spend unnecessary effort conducting research 

on topics that have already been well researched but not reported 

because results were negative. 

• Thus, it is important to report negative results. 

o But it’s also important not to “spin” them. (See Couzin-

Frankel, 2014) 

• It’s also important when planning research to search 

thoroughly for possible previous publications that have 

studied the same question.  

o If you can find negative results, this can help you plan 

appropriate sample size – or abandon the study 

altogether if results of the negative results were from a 

study with high power.   

2. Effects that are not real may appear to be supported by research. 

• Recall: If a significance level of 0.05 is used, then in repeated 

studies, (at least) 5% of studies where the null hypothesis is 

true will falsely reject the null hypothesis.  

• Thus, if just (or even predominantly) the statistically 

significant studies are published, the published record 

misrepresents the true situation.  (More on this tomorrow) 

 

3. Furthermore, papers that are published because of Type I errors, 

if underpowered, may show an exaggerated effect size (“Winner’s 

curse”), increasing the misrepresentation. 
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Some Methods Proposed to Detect Publication Bias: 

1. Rosenthal (1979) proposed a method, based on probability 

calculations, for deciding whether or not a finding is "resistant to 

the file drawer threat."  

• This method has become known as the fail-safe file drawer 

(or FSFD) analysis.  

o Scargle (2000) has criticized Rosenthal's method on the 

grounds that it fails to take into account the bias in the 

"file drawer" of unpublished studies, and thus can give 

misleading results.  

o More recently, Simonsohn et al (2013) have pointed out 

that the prevalence of “p-hacking” (to be discussed 

tomorrow) invalidates Rosenthal’s method.  

2. Various types of plots have been used to try to detect publication 

bias. These plot some measure of precision against effect size, or 

vice-versa. 

• Some such plots are called “funnel plots” because they 

typically have a funnel shape. 

o However, Lau et al (2006) point out some problems in 

using these plots.  

o See also Sterne et al (2011) for recommendations in 

using funnel plots. 

• Recently, Simonsohn et al (2013) have proposed a method 

called “p-curving” to detect possible publication bias and/or 

p-hacking (to be discussed tomorrow). 
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3. Research registries have been instituted in some areas. 

• For example, certain clinical trials are now required by law to 

be registered at the NIH database ClinicalTrials.gov. 

• These are beginning to point to possible systemic problems, 

such as: 

o The “partial publication bias” mentioned above.  

o “We are finding that in some cases, investigators cannot 

explain their trial, cannot explain their data. Many of 

them rely on the biostatistician, but some 

biostatisticians can’t explain the trial design. 

So there is a disturbing sense of some trials being done 

with no clear intellectual leader.” 

Deborah Zarin, Director, ClinicalTrials.gov, quoted in 

interview in Marshall (2011) 

• Registration does not solve other problems (including 

those discussed in this course) that can make the literature 

misleading. 

o See, for example, blog posts during June, July, and 

August at http://www.ma.utexas.edu/blogs/mks 

discussing problems with registered reports.  
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4. Additionally, full data may reveal a different story from what 

appears in published papers, conference proceedings and registries.  

 

• Although such data is increasingly becoming more available, 

obtaining it can often still be difficult or impossible. 

 

• See Doshi et al (2012) for an example. 

o The editorial preface to this article says: “After 

publication of a Cochrane review into the effectiveness 

of oseltamivir [Tamiflu] in 2009, the reviewers got 

access to thousands of pages of previously unavailable 

data. [The authors] describe how it shook their faith in 

published reports and changed their approach to 

systematic reviews.” 

o The authors obtained over 3000 pages of study reports 

from one pharmaceutical company, and over 25,000 

pages from the European Medicines Agency. 

o The new review based on the additional data took the 

equivalent of two full-time researchers for 14 months. 

o They also point out how calculations based on 

electronic data bases may be questionable (e.g., 

because of lack of standardized definitions for 

complications). 
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• Further examples to explore: 
o Doshi et al (2013) A call for and discussion of 

publishing results of “invisible and abandoned trials”. 

o Le Noury et al (2015) A reanalysis of clinical trial data 

on efficacy and harm of Paxil use for treatment of 

depression in adolescents. (An example of the type of 

study called for in the preceding article.) 

o Der Spiegel interview with whistleblower Peter 

Wilmshurst 

http://www.spiegel.de/international/zeitgeist/spiegel-

interview-with-whistleblower-doctor-peter-wilmshurst-

a-1052159.html 

• More recently, Jefferson et al (2014) studied risk of bias in 

reports on 14 clinical trials of oseltamivir 

o They compared risk estimates for three different 

levels of reporting. (In increasing order of 

information: journal publications, core reports, and 

full clinical trial reports.) 

o They found that risk of bias increased as documents 

provided more information. 

• An accurate “history” of computational methods used is 

also an important source of data on research methods.  

o One method for facilitating this is sweave, 

http://www.stat.uni-muenchen.de/~leisch/Sweave/. 
 

See the Appendix for suggestions for helping to deal with the File 

Drawer Problem. 

 

 

 

 

 

 

  


