OPTIONAL SUPPLEMENT TO CHAPTER 27: OUTLINES OF PROOFS OF FORMULAS ON pp. 681 – 682

Assumptions: We have a random variable Y (the response variable) and fixed values x_1 , x_2, \ldots, x_n of an explanatory variable X. We will assume that the random variable Y satisfies the following conditions (which are just rephrasings of the assumptions on pp. 675 - 676 of the textbook):

- Linearity assumption: There are constants β_0 and β_1 such that for each value x of X within some range of interest, $E(Y|x) = \beta_0 + \beta_1 x$ (The textbook uses μ_y instead of E(Y|x).)
- *Independence assumption*: The conditional distributions $Y|x_1, Y|x_2, ..., Y|x_n$ are independent. (This will imply that the error random variables $Y|x_1 - (\beta_0 + \beta_1 x_1)$, $Y|x_2 - (\beta_0 + \beta_1 x_2) \dots, Y|x_n - (\beta_0 + \beta_1 x_n)$ are independent. The book refers to these collectively as ε .)
- Equal variance assumption: All error variables $Y|x (\beta_0 + \beta_1 x)$ (for x within the range of interest) have the same variance, which we will call σ^2 .
- Normality assumption: Each conditional distribution $Y|x_1, Y|x_2, ..., Y|x_n$ is normal. (This will imply that each error variable $Y|x_i - (\beta_0 + \beta_1 x_i)$ is normal.)
- **I.** The formula for s_e (p. 681): The reason this formula has n-2 in the denominator is similar to the reason that the formula for the ordinary sample standard deviation s has n-1 in the denominator: so its square will give an *unbiased* estimator of the population variance. (See the Chapter 18 handout "Why Does the Sample Variance Have n-1 in the Denominator" for some details on that.)

Outline:

- The formula for s_e^2 allows us to define a random variable S_e^2 in the regression context as follows:
 - The random process for S_e^2 is, "Randomly choose a sample $y_1, y_2, ..., y_n$ in such a way that each y_i is a random observation from $Y|x_i$."

 The value of S_e^2 corresponding to this sample is s_e^2 calculated using this
 - sample.
- S_e^2 is thus an *estimator* of σ^2 .
- It can be proved (the proof is beyond the scope of this course) that $E(S_e^2) = \sigma^2$, so S_e^2 is an *unbiased* estimator of σ^2 .
- Note that this implies that if we used the formula with n-1, rather than n-2, in the denominator, we would get an estimator with expected value $\left(\frac{n-2}{n-1}\right)\sigma^2$, which means we would be consistently *under* estimating σ^2 . This wouldn't be too bad for large enough n, but could be a problem for small n. However, the estimator S_e^2 is also needed for deriving some of the other formulas and properties.
- II. The formula for $SE(b_1)$ (p. 682): (For more details, see notes Statistical Properties of Least Squares Estimators from a course in regression, available at http://www.ma.utexas.edu/users/mks/384Gfa08/384G08home.html)

- It is possible to prove that the least squares estimator obtained by using the formula for b_1 is an unbiased estimator of β_1 . By abuse of notation: $E(b_1) = \beta_1$. One proof depends on using the least squares equations to write b_1 as a certain linear combination of the sampled values y_1, y_2, \ldots, y_n . (This proof uses just the linearity assumption and the properties of expected values.)
- Applying the properties of variances to the same linear combination expression, and using the independence and constant variance (as well as linearity)

assumptions leads to the formula
$$Var(b_1) = \frac{\sigma^2}{SXX}$$
, where $SXX = \sum (x_i - \overline{x})^2$

• Approximating σ by s_e , noting that $SXX = (n-1)s_e^2$, and taking square roots then gives the formula for $SE(b_1)$ on p. 682

III. Why $\frac{b_1-\beta_1}{SE(b_1)}$ has the t-distribution with n-2 degrees of freedom (p. 682): (For more

details, see notes *Inference for Simple Linear Regression* from a course in regression, available at http://www.ma.utexas.edu/users/mks/384Gfa08/384G08home.html)

Recall from the handout <u>Chi-Squared Distributions</u>, <u>t-Distributions</u>, <u>and Degrees of Freedom</u> (Supplement to Chapter 23):

Definition: The <u>t distribution with k degrees of freedom</u> is the distribution of a random variable which is of the form $\frac{Z}{\sqrt{V_k}}$ where

- i. $Z \sim N(0,1)$
- ii. $U \sim \chi^2(k)$, and
- iii. Z and U are independent.

In that handout, this definition was used to show why (under the conditions for a one-sample t-test for a mean) $\frac{\overline{y} - \mu}{s / \sqrt{n}}$ has a t-distribution. The reasoning showing that $\frac{b_1 - \beta_1}{SE(b_1)}$

has a t-distribution is similar. Here's an outline:

- The fact (mentioned above) that b_1 is a certain linear combination of the sampled values y_1, y_2, \ldots, y_n can be reframed to say that the estimator defined by b_1 is a linear combination of the random variables $Y|x_1, Y|x_2, \ldots, Y|x_n$.
- This plus the independence and normality assumptions implies that the estimator defined by b₁ (which by abuse of notation we will also call b₁) is normal.
- Since $E(b_1) = \beta_1$, standardizing b_1 says that $\frac{b_1 \beta_1}{SD(b_1)} \sim N(0,1)$ (i.e., is standard normal. This will turn out to be the Z in the definition of t-distribution.)
- From (II) above, $SD(b_1) = \sqrt{\frac{\sigma^2}{SXX}}$.
- Use algebra to re-express $SE(b_1)$ as follows:

$$SE(b_1) = \sqrt{\frac{s_e^2}{SXX}} = \frac{\sqrt{\frac{\sigma^2}{SXX}}}{\sqrt{\sigma^2/s_e^2}} = \frac{SD(b_1)}{\sqrt{\sigma^2/s_e^2}}$$

• Now use this to re-express $\frac{b_1 - \beta_1}{SE(b_1)}$ as

$$\frac{b_{1}-\beta_{1}}{SE(b_{1})} = \frac{b_{1}-\beta_{1}}{SD(b_{1})} \sqrt{\sigma^{2}/s_{e}^{2}} = \frac{b_{1}-\beta_{1}}{SD(b_{1})} / \sqrt{s_{e}^{2}/\sigma^{2}}$$
 (*)

- As remarked above, the numerator of the last expression in equation (*) is standard normal.
- There is a theorem (beyond the scope of this course) that says that (under the assumptions)
 - a. (n-2) $\frac{s_e^2}{\sigma^2}$ has a χ^2 distribution with n-2 degrees of freedom

Notation: (n-2)
$$\frac{s_e^2}{\sigma^2} \sim \chi^2(\text{n-2})$$

- b. (n-2) $\frac{s_e^2}{\sigma^2}$ is independent of $b_1 \beta_1$ (hence independent of the numerator in (*))
- Putting this all together, we now see that (*) shows that $\frac{b_1 \beta_1}{SE(b_1)} = \frac{Z}{\sqrt{U_k}}$, where
 - $O Z = \frac{b_1 \beta_1}{SD(b_1)}$ is standard normal
 - \circ k = n-2
 - 0 U = (n-2) $\frac{s_e^2}{\sigma^2}$ is χ^2 distribution with k degrees of freedom, and
 - o U and Z are independent.
- This says that $\frac{b_1-\beta_1}{SE(b_1)}$ indeed has a t-distribution with n-2 degrees of freedom.