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1 BPS states

We begin with an account of what a “BPS state” is and what it means to “count” them.

1.1 Hilbert space

The quantum theories we want to understand are describing phenomena which take
place in Minkowski space E3,1. Among other things, such a theory is supposed to have an
associated Hilbert space H, whose vectors represent the possible “states” of the system.

One simple example of a quantum theory which will be important for us is quantum
Maxwell theory, which describes the dynamics of the electromagnetic field, perhaps coupled
to some dynamical charged particles. In this theory any state can be labeled by a Z-
valued electric charge (e.g. this charge would be +3 in a state with four electrons and one
antielectron), and a Z-valued magnetic charge (which likewise counts the net number of
monopoles). More generally, in the theories of interest for us the Hilbert space is graded by
a “charge lattice” Γ:

H =
⊕
γ∈Γ

Hγ. (1.1)

This lattice is equipped with a natural Z-valued antisymmetric pairing 〈, 〉. One convenient
way of defining this pairing is as follows: given two particles with charges γ, γ′ their crossed
electromagnetic fields carry 〈γ, γ′〉 units of angular momentum (along the axis from x to x′).
Roughly this means that the pairing is nonzero only if γ carries an electric charge and γ′ a
magnetic charge or vice versa.

1.2 Classification of particles

Our aim is to define invariants Ω(γ) which in an appropriate sense “count 1-particle
states with charge γ”.

In classical mechanics, the mental picture one usually has of a particle is a little bil-
liard ball that is located at some position and moving with some momentum. In quantum
mechanics, it turns out that the sharpest definition of a particle is as a certain representation.

EachHγ is supposed to be a projective unitary representation of the groupG = Isom(E3,1) =
ISO(3, 1). What does this representation look like?
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• The simplest state to consider is the vacuum of the theory. You should think of this
state as representing “empty space” (or as close to empty as one can get in the quantum
world). It generates a copy of the trivial representation of ISO(3, 1) inside H.

• The next simplest kind of state is one where space is empty but for a single particle,
propagating with some definite 4-momentum p ∈ T ∗E3,1 = R3,1. The space H1 of such
states decomposes into a discrete sum of representations of ISO(3, 1) as follows:

– First, H1 splits into components H1
M labeled by M ∈ R≥0. M2 is the eigenvalue

of a quadratic Casimir operator in ISO(3, 1). Physically it is the mass of the
particle.

– Second, these components have a further discrete decomposition. When M > 0
(the only case we will need here), this decomposition arises as follows. We fix
some prest ∈ (R3,1)∗ with ‖prest‖2 = M2, and consider the subspace H1,rest

M ⊂ H1
M

of states on which the translation subgroup T = R3,1 acts by the character prest.
This space forms a projective unitary representation of the stabilizer of prest,

Grest = SO(3) n T ⊂ ISO(3, 1). (1.2)

Now SO(3) has projective unitary representations Vj classified by j ∈ 1
2
Z≥0, with

dimVj = 2j + 1. So we get a decomposition by type, H1,rest
M = ⊕jH1,rest

M,j . Each

H1,rest
M,j generates a subspace H1

M,j under the action of the full ISO(3, 1). The
decomposition of H1

M is then

H1
M = ⊕jH1

M,j. (1.3)

So as far as the symmetries of spacetime are concerned, massive particles are labeled
by the two invariants M ∈ R≥0 and j ∈ 1

2
Z≥0.

• Finally there are the rest of the states, sometimes called the “multiparticle” spectrum.
As far as the G-action goes, these states are quite different from the 1-particle states.
To understand why, consider the simple case of a two-particle state, composed of
two particles with masses M1 and M2. By acting with SO(3, 1) we can pass to the
“center of mass frame” where the momenta are p1 = (

√
M2

1 + P 2, P, 0, 0) and p2 =

(
√
M2

2 + P 2,−P, 0, 0), so the total mass is

M = ‖p1 + p2‖2 =
√
M2

1 +M2
2 + 2‖P‖2. (1.4)

Since the relative spatial momentum P can be arbitrary, there is a continuum of
possible masses M for the 2-particle state: any M ∈ [M1 + M2,∞) is allowed. So
the 2-particle states do not sit in a single irreducible representation of G or even a
discrete sum of them, but rather occur in a continuous family. Similar comments
apply to states with more than 2 particles.
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1.3 BPS particles

The Hilbert space H contains a huge amount of information about the quantum field
theory, in some sense too much — we would like to distill it down to some more understand-
able and more invariant quantities. This is hopeless for a general quantum theory, but the
situation is better for supersymmetric theories, i.e. quantum theories for which the group
G = ISO(3, 1) is extended to a supergroup G̃. The particular G̃ that concerns us here has
Lie algebra

g̃ = g̃+ ⊕ g̃− (1.5)

where the even part g̃+ is a direct sum

g̃+ = iso(3, 1)⊕ C. (1.6)

The abelian C factor is central in g̃, and has a canonical generator Z.
We can then ask for the decomposition of H1 under the whole G̃ instead of just under

ISO(3, 1). The basic approach is closely analogous to the previous section:

− As before, we have the quadratic Casimir M constructed from ISO(3, 1) ⊂ G̃. In
addition we now have the central generator Z. These two give a decomposition of H1

into a discrete sum of pieces H1
M,Z , with M ∈ R≥0 and Z ∈ C.

− To understand the decomposition of eachH1
M,Z , we consider again a subspaceH1,rest

M,Z on
which the translations along R3,1 act by some fixed character prest. It is a representation
of a subgroup G̃rest ⊂ G̃,

G̃rest = SO(3) n T̃ , (1.7)

where the “super translation group” T̃ is generated by the ordinary translations T ,
plus the central generator Z, plus the “odd translations” g̃−.

This is where the interesting new wrinkle emerges. In the previous case we only had
to consider the ordinary translations, which just act by the fixed character prest and
hence don’t contribute much to the representation theory of G̃rest. In the present case
we also have to consider the odd translations, which (once we have diagonalized T̃ and
Z) act by a Clifford algebra (on an 8-dimensional vector space). One finds:

∗ If M < |Z| there are no unitary representations of the Clifford algebra.

∗ If M = |Z| the Clifford algebra is degenerate, and its unique unitary irrep S has
dimension 24/2 = 4.

∗ If M > |Z| the Clifford algebra is nondegenerate, and its unique unitary irrep S
has dimension 28/2 = 16.

In either case, since SO(3) acts by automorphisms of the Clifford algebra it automat-
ically acts projectively on S as well, so S is a representation of the whole G̃rest. As a
representation of SO(3), S decomposes as

S =

{
Sshort = 2V0 ⊕ V 1

2
for M = |Z|,

Slong = 5V0 ⊕ 4V 1
2
⊕ V1 for M > |Z|.

(1.8)
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The most general irreducible representation of G̃rest is obtained by tensoring S with an
arbitrary irrep of SO(3), on which T̃ acts trivially. So as before, the irreps of G̃rest are
labeled by j ∈ 1

2
Z+, but their structure is slightly more complicated: as representations

of SO(3) they are
Ṽj,short/long = Vj ⊗ Sshort/long. (1.9)

As before, the decomposition of H1
M,Z under the full G̃ corresponds to the decomposi-

tion of H1,rest
M,Z under G̃rest.

1.4 BPS degeneracies

Define nj(γ) ∈ Z+ to be the multiplicities occurring in the decomposition

H1
rest,γ =

 ⊕
j∈ 1

2
Z+

Ṽ
⊕nj(γ)
j,short

⊕ (long representations). (1.10)

Naively one might imagine that nj(γ) are the invariants we are after.
However, at least a priori, they do not have the desired deformation invariance. The

trouble is that as we deform the theory, several short representations can combine into a
long one and move off from M = |Z| to M = |Z| + ε. To deal with this we define an index
which counts short representations with some signs (and weights), with the key property
that it vanishes for combinations which can combine into long representations. Up to scalar
multiple there is a unique such index:

Ω(γ) =
∑

j∈ 1
2
Z≥0

(−1)2j(2j + 1)nj(γ). (1.11)

It is defined more conceptually by

Ω(γ) = −1

2
TrH1

rest,γ
(2J)2(−1)2J (1.12)

where J ∈ so(3) is the generator of rotations around any axis.

2 Examples

Perhaps now it is a good time to explain where these Hilbert spaces actually come from
in some examples. At the same time, this will explain why any of this business should be of
interest for geometers.

2.1 Example: Calabi-Yau threefolds

The starting point is Type II superstring theory. In this theory spacetime is a 10-manifold
Y with metric, usually taken to be Lorentzian. We take this 10-manifold to be of the form

Y = X × E3,1 (2.1)
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where X is a Riemannian six-manifold. Because of the factor E3,1 here this is a quantum
system of the type we have been discussing, with a Hilbert space acted on by ISO(3, 1).
Moreover, if we choose X to be a Calabi-Yau threefold, then the system is supersymmetric.

Now let us consider the space of (charged) 1-particle states. The classical picture of these
states is simple to understand: they come from extended objects known as “Dp-branes.” One
considers such a Dp-brane supported onD×c, whereD is a p-cycle inX and c a 1-dimensional
timelike curve in E3,1. As far as the spacetime E3,1 is concerned this object looks like a single
particle.

The precise story depends on whether we consider Type IIA or Type IIB string theory:
in IIA there are branes with any even p, in Type IIB with any odd p.

Now, does this particle give rise to a BPS state or not? To answer this question we
consider again the inequality M ≥ |Z|. The mass M of the particle is just given by the
volume of D. The central charge Z turns out to be the integral of an appropriate calibration
form. For example, in Type IIB it involves the holomorphic 3-form Ω,

Z =

∫
D

Ω. (2.2)

On the other hand, in Type IIA it is given (in a somewhat oversimplified picture, in particular
neglecting quantum corrections) in terms of the Kähler form ω,

Z =

∫
D

ωp/2

(p/2)!
(2.3)

In both cases the inequality M ≥ |Z| indeed holds, as we expected on general representation-
theoretic grounds. Moreover, the Dp-branes which obey M = |Z| are just the ones supported
on calibrated cycles D. So in Type IIA string theory one can obtain BPS states from
holomorphic cycles in X, and in IIB string theory one can obtain BPS states from special
Lagrangian 3-cycles.

2.2 Example: M5-brane theories

Here is a second example which is somehow simpler. The starting point is M-theory
instead of string theory.

In M-theory spacetime is an 11-manifold, again usually Lorentzian. We take it to be of
the form

Y = Q× E3 × E3,1 (2.4)

where Q is any hyperkähler 4-manifold.
Then let Σ be a complex submanifold of Q (in one of its complex structures). We intro-

duce an M5-brane supported on Σ× E3,1. (Unlike IIA/B string theory which we considered
above, in M-theory the basic objects are relatively few: only M2-brane and M5-brane.) This
gives a supersymmetric quantum system of the sort we are after.

In this case the classical picture of the particles we are after is an M2-brane supported
on D × {pt.} × c, with c a 1-dimensional timelike curve in E3,1 as before, and D an open
surface in Q with boundary ∂D ⊂ Σ. Their mass is the area of D and their central charge is

Z =

∫
D

Ω, (2.5)
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where Ω is the holomorphic symplectic form on Q (much like the Type IIB example above).
So the BPS states in this case come from open special Lagrangian surfaces.1

2.3 Example: Nonabelian gauge theories

There is a third class of examples of N = 2 supersymmetric theories in d = 4. To pick
out a member of this class one needs the datum of a compact Lie group G, together with a
“sufficiently small” representation R of G obeying some mild conditions.

This class of examples includes a theory famously related to Donaldson’s 4-manifold
invariants, obtained when we take G = SU(2) and let R be the trivial representation.

3 Walls

In many of these examples there are well-known phenomena in which one of the objects
we want to count splits into two as the geometric moduli are varied. This would seem to —
and indeed does — imply that the BPS degeneracy Ω(γ) jumps when we vary parameters.
So these “invariants” are not as invariant as one might have hoped!

This might seem like a contradiction, since we emphasized that Ω(γ) is invariant under
continuous deformations of the G̃-representation H1. The trouble is with our definition of
H1 itself. We have loosely described it as the space of states which occur discretely in H,
as opposed to the multiparticle states which occur in direct integrals. One might wonder
whether it is really possible to disentangle the two. A closer examination of this question
will enlighten us about why wall-crossing phenomena occur.

The BPS states in which we are interested are usually well separated from the direct
integrals. To see how this works, consider the space of all states with charge γ. Recall that
all such states obey the BPS bound M ≥ |Zγ|, and the BPS states are the 1-particle states
which saturate this bound,

MBPS = |Zγ|. (3.1)

Now how about the 2-particle states? Such a state would be made of particles of charges γ1

and γ2, with γ1 + γ2 = γ. From (1.4) recall that these states all have

M2−particle ≥M1 +M2. (3.2)

Combining this with the BPS bound and the triangle inequality, we find that

M2−particle ≥ |Zγ1|+ |Zγ2| ≥ |Zγ1 + Zγ2| = |Zγ| = MBPS. (3.3)

Using (3.3) we see that the continuum of 2-particle states is safely separated from the BPS
1-particle states, except in the event that |Zγ1|+ |Zγ2| = |Zγ1 + Zγ2|.

1Some readers might prefer to switch to a different complex structure on Q, to get the more conventional
setup in which C is special Lagrangian and D is holomorphic. One subtlety here is that there is actually
a circle’s worth of complex structures for which C is special Lagrangian, but any particular D of interest
is only holomorphic in one of them. To get a holomorphic picture of all the D simultaneously you have to
consider the twistor family of Q, which is of complex dimension 3 and roughly glues together all the complex
structures of Q: inside there we could identify the BPS states as holomorphic curves with boundary.
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The upshot of all this is that Ω(γ) is well defined except when there are two charges γ1,
γ2 such that Zγ1/Zγ2 ∈ R≥0 and γ1 + γ2 = γ. Since there are only countably many charges
γ, if everything were totally generic we would expect that no two of the Zγ have the same
phase. But recall that we are interested in a family of quantum systems depending on some
parameters. Let B denote the deformation space parameterizing this family. Then each Zγ
becomes a function Zγ(u) of u ∈ B, and similarly Ω(γ) is promoted to Ω(γ;u). On B there
are codimension-1 loci (“walls”) where some Zγ(u) line up, and in consequence some of the
Ω(γ;u) become undefined. Each Ω(γ;u) is locally independent of u away from these walls.

4 Wall-crossing formulas

Now a natural question arises. Suppose u+ and u− are two points of B separated by a
wall. How are the Ω(γ;u+) related to the Ω(γ;u−)?

It has recently become apparent that the answer to this question is provided by a remark-
ble wall-crossing formula (WCF), written down by Kontsevich-Soibelman in [1]. To state
the formula we need to introduce some strange-looking ingredients (which will be partly
demystified below). We begin with the algebraic torus

T̃ := Γ∗ ⊗Z C× (4.1)

This torus has characters
X̃γ : T̃ → C× (4.2)

obeying
X̃γX̃γ′ = X̃γ+γ′ . (4.3)

[To be continued.]
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