1. Recollection on nonabelian Hodge

C compact Riemann surface
\(G = \text{SU}(k) \)

Higgs bundle: \((E, \phi) \) \(E \) hermit. rank \(k \), over \(C \)
\(\phi \in \text{H}^0(End E \otimes \Omega^2) \)

Given a (polystable) Higgs bundle, \(\exists \) a harmonic metric \(h \) in \(E \) s.t.
\(\frac{\partial}{\partial S} \left[\frac{S}{h} + D_k + \phi^* S \right] = 0 \) \((D_k = \text{Chen connection in } E, \text{ unitary}) \) [Hitchin, Simpson]

Then for any \(S \in \mathbb{C} \), \(\nabla_S = \nabla + D_k + \phi^* S \) is a flat complex connection

For any fixed \(S \in \mathbb{C} \), the map \((E, \phi) \mapsto \nabla_S \) induces a diffeomorphism of moduli spaces, "nonabelian Hodge map" (NAH)

The NAH induce a hyperkähler structure on \(M_{\text{Higgs}} \).

In particular, a metric, whose Kähler form is \(\omega = \text{Re} \left(\Phi^1 \Phi^2 \right) \), [cf. Zhang talk]

Q: What can we understand explicitly?

2. Some baby examples

Find an analogue of this theory where \(\Psi \) is allowed poles, subject to some conditions.

Fix \(N \), then \(\exists \) a space \(M_{K_N} \) of Higgs bundles over \(\mathbb{CP}^1 \), where eigenvalues of \(\Psi \) have

\(\lambda \sim \frac{N}{2} \frac{d^2}{dz^2} \) [w/Laura Fredrickson]

Inside \(M_{K_N} \), there's a half-dimensional slice, "Hitchin component"

\(K = 2 \) \(\{ E = O_{\mathbb{C}^1}^{(N)} \oplus O_{\mathbb{C}^1}^{(-N)}, \Psi = \begin{pmatrix} 0 & 1 \\ P_2(z) & 0 \end{pmatrix} \frac{d^2}{dz^2} \text{ with } P_2(z) = z^N + (\text{degree } \leq \frac{N-1}{2}) \}\)

\(\text{NAH at } S = \frac{1}{2} \)

\(\frac{1}{2} \) harmonic maps \(F: \mathbb{C} \rightarrow \text{SL}_2 \mathbb{R}/\text{SO}_2 \) with image ideal \((N+2)g \) [Hua--Tam--Fredericks--Wed] [Wolf]

\((Q, \text{Li talk}) \)
$K = 3$: \(\{ \varepsilon = O(3) \oplus O(3) \} \), \(\varphi = \begin{pmatrix} 0 & 0 \\ \frac{P_2(z)}{P_3(z)} & 0 \end{pmatrix} \) with \(P_2(z) = (\text{degree} \leq \frac{N-1}{3}) \), \(P_3(z) = z^N + (\text{degree} \leq \frac{2N-1}{3}) \)

\[\text{coeff of } P_2, P_3 \]

NAH at \(f = 5 \)!

- \{ \text{harmonic maps } F: C \to SL_3 \mathbb{R}/SO_3 \text{ with "polynomial growth"} \}

- \text{SL}_{3} \mathbb{R}

- [Laffon, Laboucin, Dumas-Wolf] when \(P_2 = 0 \): polynomial affine spheres

\(\text{cross ratios of } N+3 \text{ pts in } \mathbb{R}P^2 \) (convex polyg.)

\[\text{Suppose } \prod_{k=1}^{N} \left(\frac{z^k}{w_k} \right)^{\beta_k} \]

\[\text{Let } \{ X_A, X_B \} \text{ be cross ratios of the polygon: } X_A = r_{1235}, X_B = r_{1345} \quad (X_A = X_B) \]

Weak prediction: if we replace \(P_2 \to R^2 P_2 \) then \(X_A = \exp \left(-5.04 \pi \cdot R + 8(R) \right) \), \(\lim_{R \to 0} \delta(R) = 0 \)

\[\text{Weak prediction: } \delta(R) = -\frac{3}{2N \pi R i} e^{-2 \pi i R} + \tilde{\delta}(R) \]

\[\lim_{R \to 0} \sqrt{R} e^{2 \pi i R} \delta(R) = 0 \]

Strong prediction: \(X_A \) can be extended to a piecewise analytic function \(X_A(\xi), \xi \in \mathbb{C}^x \), obeying the integral eq:

\[X_A(\xi) = \exp \left[-i Z_A + 5 Z_A \right] + \int_{\mathbb{C}} \frac{1}{4 \pi i} \sum_{\mu \in \Gamma} \Omega(\mu) \chi_{\mu} \left(\frac{5}{8} \right) \frac{5}{8} \sum_{\xi \in Z_A} \log \left(1 + \chi_{\mu}(\xi) \right) \]
Why study abelianization of the family of flat connections ∇^3 and their asymptotics as $t \to 0$? "enjoy" Stokes phenomena controlled by the saddle connections; int eq. goes simplest real.

There are similar predictions for some $K=3$ examples, e.g., $P_3 = z^3 - 3z - 2$.

4) Numerical results

[Dumas-Wolf] code for computing the polygons in $K=3$ case, by directly solving PDE.

[Dumas-N] or integral equations.

e.g., for $K=2$, have to solve $\Delta u - 4e^{2u} + 4e^{-2u}|P_2|^2 = 0$.

Show results. Large R: best for \int eq. Small R: best for direct PDE. (show example $R=2$)

5) Hyperkahler metrics

$\Omega = d\log X_A \wedge d\log X_B \Rightarrow$ use these formulas to predict the HK metric.

e.g., "weakest prediction" \Rightarrow HK metric has $\|P_2\|^2 = \int \frac{|P_2|^2}{\Omega} \ "semiflat metric"$.

Show results.