M 361K Spring 2011 (55380), Sample Midterm

Name:

Question		Points	Score
	1	60	
2	40		
	3	20	
Total:	120		

Problem 1 (60 points).

(a) (20 points) State the definition of convergence.
(b) (20 points) Prove that the sequence $a_{n}=1 /\left(n^{4}+1\right)$ converges to 0 . Assume only the definition of convergence and the Archimedean property of the real numbers (for any $x \in \mathbb{R}$, there exists some $n \in \mathbb{N}$ such that $n>x$.)
(c) (20 points) Suppose that a_{n} is a sequence which converges to $L \in \mathbb{R}$ and also converges to $M \in \mathbb{R}$. Prove that $L=M$. Assume only the definition of convergence.

Problem 2 (40 points).
True or False. If the statement is true, give a proof. If the statement is false, give a counterexample and prove that it is a counterexample. You may freely use any statement which was proved in the homework, except for the precise statement you are being asked to prove.
(a) (20 points) If the sequence a_{n} is divergent, and all $a_{n} \neq 0$, then the sequence $b_{n}=1 / a_{n}$ is also divergent.
(b) (20 points) If the sequence a_{n} converges to L, then the sequence $b_{n}=\left|a_{n}\right|$ converges to $|L|$.

Problem 3 (20 points).

For this question you may freely use any fact proven in the homework, except for the precise statement you are being asked to prove.
(a) (20 points) Prove that if $r>1$ then the sequence $a_{n}=r^{n}$ diverges to $+\infty$. You need not write out every detail; just explain clearly the main steps.

