M 365C

Fall 2013, Section 57465 Problem Set 10 Due Thu Nov 7

In your solutions to these exercises you may freely use any results proven in class or in Rudin chapters 1-6, without reproving them.

Exercise 1 (Rudin 6.2)

Suppose $f(x) \ge 0$ for all $x \in [a, b]$, f is continuous, and $\int_a^b f(x) dx = 0$. Prove that f(x) = 0 for all $x \in [a, b]$.

Answer of exercise 1

Suppose for contradiction that $f(y) = c \neq 0$ at some $y \in [a, b]$. Then by continuity, there exists some neighborhood $N_{\epsilon}(y)$ such that f(x) > c/2 for all $x \in N$. Now choose a partition P of [a, b] such that one of the intervals of the partition is $I = [y - \frac{\epsilon}{2}, y + \frac{\epsilon}{2}]$. Let m be the infimum of f(x) for $x \in I$; then $m \geq c/2$. The full lower sum L(P, f) is obtained by summing the contribution from the interval I plus the contributions from other intervals. All those contributions are nonnegative, so L(P, f) is at least the contribution from I, i.e. $L(P, f) \geq m\epsilon$. But then

$$\int_{a}^{b} f(x) dx \ge L(P, f) \ge m\epsilon > 0.$$

Exercise 2 (Rudin 6.5)

Suppose f is a bounded real function on [a, b] and f^2 is Riemann integrable on [a, b]. Does it follow that f is Riemann integrable on [a, b]? Does the answer change if we assume instead that f^3 is Riemann integrable on [a, b]?

Answer of exercise 2

If f^2 is Riemann integrable it need not follow that f is; a counterexample is provided by the function

$$f(x) = \begin{cases} 1 \text{ if } x \in \mathbb{Q}, \\ -1 \text{ if } x \notin \mathbb{Q}. \end{cases}$$

However, if f^3 is Riemann integrable then the situation is better. Indeed, for any x we can define a "cube root" $x^{1/3}$, such that $(x^3)^{1/3} = x$. (We had defined $x^{1/3}$ before only for $x \geq 0$; but we can extend it to x < 0 by defining $x^{1/3} = -|x|^{1/3}$ for x < 0. Then we can check directly that the resulting function indeed has $(x^3)^{1/3} = x$ for all x.) Moreover this function is continuous (we have proved before that it is continuous for $x \geq 0$, but this easily implies it is continuous for all x.) Then $f(x) = (f^3)^{1/3}$, and f^3 is integrable, so f is obtained by applying a continuous function to an integrable function, so f is also integrable.

Exercise 3 (Rudin 6.7, in part)

Suppose f is a real function on (0,1] and f is Riemann integrable on [c,1] for every c>0. We then define

 $\int_0^1 f(x) \, \mathrm{d}x = \lim_{c \to 0} \int_c^1 f(x) \, \mathrm{d}x$

if this limit exists.

If f is Riemann integrable on [0,1], show that this definition agrees with the old one.

Answer of exercise 3

The easy way: if f is Riemann integrable then the function $F(c) = \int_c^1 f(x) dx$ is continuous on [0,1] (using Rudin's Theorem 6.20). Thus

$$\lim_{c \to 0} F(c) = F(0)$$

which means

$$\lim_{c \to 0} \int_c^1 f(x) \, \mathrm{d}x = \int_0^1 f(x) \, \mathrm{d}x$$

which is what we wanted to prove.

The harder way (doing it "by hand"): if f is Riemann integrable on [0,1] then in particular it is bounded, say |f(x)| < M for all $x \in [0,1]$. Thus

$$\left| \int_0^c f(x) \, \mathrm{d}x \right| \le \int_0^c |f(x)| \, \mathrm{d}x \le Mc$$

SO

$$0 \le \lim \inf_{c \to 0} \left| \int_0^c f(x) \, \mathrm{d}x \right| \le \lim \sup_{c \to 0} \left| \int_0^c f(x) \, \mathrm{d}x \right| \le \lim_{c \to 0} Mc = 0$$

and hence

$$\lim_{c \to 0} \left| \int_0^c f(x) \, \mathrm{d}x \right| = 0$$

which is equivalent to

$$\lim_{c \to 0} \int_0^c f(x) \, \mathrm{d}x = 0.$$

Now

$$\int_{c}^{1} f(x) \, \mathrm{d}x = \int_{0}^{1} f(x) \, \mathrm{d}x - \int_{0}^{c} f(x) \, \mathrm{d}x$$

and so

$$\lim_{c \to 0} \int_{c}^{1} f(x) \, dx = \int_{0}^{1} f(x) \, dx - \lim_{c \to 0} \int_{0}^{c} f(x) \, dx$$

i.e.

$$\lim_{c \to 0} \int_c^1 f(x) \, \mathrm{d}x = \int_0^1 f(x) \, \mathrm{d}x$$

as desired.