
M 365C
Fall 2013, Section 57465

Problem Set 6
Due Thu Oct 10

In your solutions to these exercises you may freely use any results proven in class or in
Rudin chapters 1-3, without reproving them.

Exercise 1 (Rudin 3.6, modified)

Investigate the behavior (convergence or divergence) of
∑
an if

1. an =
√
n+ 1−

√
n,

2. an =
√
n+1−

√
n

n
,

3. an = (n1/n − 1)n.

Answer of exercise 1

1. The partial sums are just sn =
∑n

k=1 ak =
√
n+ 1 − 1. But for any M ∈ R, if we

take n > (M + 1)2 − 1, then
√
n+ 1− 1 > M . Thus sn is unbounded above, and thus

limn→∞ sn does not exist. Thus
∑
an diverges.

2. In a previous assignment you have shown that
√
n(
√
n− 1−

√
n)→ 1

2
. It follows that

there exists N such that for all n ≥ N ,
√
n(
√
n− 1 −

√
n) < 1. Thus for all n ≥ N ,√

n− 1 −
√
n < 1√

n
, so 0 < an <

1
n3/2 . But

∑
n

1
n3/2 converges. It follows that

∑
an

also converges.

3. Apply the root test: let α = limn→∞ sup(n1/n − 1). Rudin shows that n1/n → 1. Thus
α = 1− 1 = 0 < 1, so

∑
n an converges.

Exercise 2 (Rudin 3.8)

If
∑
an converges, and if {bn} is monotonic and bounded, prove that

∑
anbn converges.

Answer of exercise 2

This problem is deceptively tricky. It is tempting to try to do it by establishing some
inequality like |

∑q
n=p anbn| ≤ M |

∑q
n=p an|, but I think this won’t work: no such inequality

can exist, since in some cases we might have |
∑q

n=p an| = 0 but
∑q

n=p anbn 6= 0. (for example
imagine that a1 = 1, a2 = −1, while b1 = 1, b2 = 1/2, and consider p = 1, q = 2.) In fact,
it is pretty delicate to get the estimate we want, but fortunately Rudin has done the hard
work for us, as follows.
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{bn} is monotonic and bounded, so it has some limit M . Let cn = bn −M . Then {cn}
is also monotonic and cn → 0. Since anbn = an(cn + M), and

∑
Man converges, we see

that
∑
anbn converges if and only if

∑
ancn converges. If {cn} is monotonically decreasing

then Theorem 3.42 of Rudin shows that
∑
ancn indeed converges. If {cn} is monotonically

increasing then we define c′n = −cn and apply Theorem 3.42 to
∑
anc
′
n.

Exercise 3 (Rudin 3.20)

Suppose {pn} is a Cauchy sequence in a metric space X, and some subsequence {pnk
}

converges to a point p ∈ X. Prove that the full sequence {pn} converges to p.

Answer of exercise 3

Fix ε > 0. We want to show that there exists N ∈ N such that n > N =⇒ d(pn, p) < ε.
Since {pn} is Cauchy, there exists N ∈ N such that m,n > N =⇒ d(pm, pn) < ε/2. Since
the subsequence {pnk

} converges to p, there exists some k ∈ N such that d(pnk
, p) < ε/2 and

nk > N . Then for n > N we have

d(pn, p) < d(pn, pnk
) + d(pnk

, p) = ε/2 + ε/2 = ε.

Exercise 4 (Rudin 3.21)

Suppose {En} is a sequence of closed nonempty and bounded sets in a complete metric
space X, with En ⊃ En+1, and limn→∞ diamEn = 0. Prove that ∩∞n=1En consists of exactly
one point.

Answer of exercise 4

Pick a sequence {pn} in X, with pn ∈ En for all n. We will show that {pn} is a Cauchy
sequence. Indeed, fix some ε > 0. Since diamEn → 0, there exists some N ∈ N for which
diamEN < ε. For any n,m > N we have pn, pm ∈ EN and thus d(pn, pm) < ε, so {pn} is
a Cauchy sequence as desired. Since X is complete, it follows that {pn} converges; let p be
the limit.

Now we want to show that p ∈ EN for all N . Since pn → p, for any ε > 0 there is some
n for which pn ∈ Nε(p); also pn ∈ EN , so Nε(p) contains a point of EN . Hence p is a limit
point of EN . But EN is closed, so this means p ∈ EN . Since this holds for all N , we have
p ∈ ∩∞n=1En.

Finally, we need to show that p is the only point in ∩∞n=1En. So, suppose there is some
q ∈ ∩∞n=1En with q 6= p. Then there exists some n such that diam(En) < d(p, q). Since both
p and q are in En, this is a contradiction.

* Exercise 5 (Rudin 3.22)

Suppose X is a nonempty complete metric space, and {Gn} is a sequence of open subsets
of X, such that each Gn is dense in X. Prove that ∩∞n=1Gn is not empty. (In fact, it is dense
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in X.) (Hint: find a shrinking sequence of neighborhoods En such that Ēn ⊂ Gn, and apply
the previous exercise.)

Answer of exercise 5

It is useful to first think about an easier question: how do we know even that G1 ∩ G2

is not empty? Pick any q ∈ G1. Since G1 is open, there is some neighborhood N of q with
N ⊂ G1. Then since G2 is dense in X, either q ∈ G2 or q is a limit point of G2; in either
case N contains a point p ∈ G2. Then p ∈ G1 ∩G2.

Now we consider the real question.
First, let p1 be any point of G1. Since G1 is open, there exists some ε for which Nε(p1) ⊂

G1. Picking some ε′ < ε, let E1 = Nε′(p1); then Ē1 ⊂ Nε(p1) ⊂ G1.
Next, take any q2 ∈ E1. Since E1 is open, there is some neighborhood N of q2 such that

N ⊂ E1. Then since G2 is dense in X, either q2 ∈ G2 or q2 is a limit point of G2; in either
case N contains a point p2 ∈ G2. Now, since N and G2 are both open, there exists some ε
such that Nε(p2) ⊂ N ⊂ E1 and also Nε(p2) ⊂ G2. Pick some ε′ < ε, and let E2 = Nε′(p2);
then Ē2 ⊂ Nε(p2) ⊂ E1 and also Ē2 ⊂ G2.

Continuing in this way we obtain subsets E1 ⊃ E2 ⊃ E3 ⊃ · · · with Ēn ⊂ Gn. By
shrinking En if necessary at each step, we can arrange that diamEn < 1/n, so diamEn → 0.
Thus, using the previous exercise, ∩∞n=1Ēn contains a single point p. Then p is also in ∩∞n=1Gn.
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