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In your solutions to these exercises you may freely use any results proven in class or in
Rudin chapters 1-3, without reproving them.

Exercise 1 (Rudin 3.6, modified)

Investigate the behavior (convergence or divergence) of > a,, if

—_

. Ay

a, =+vn+1—+/n,

_ Vvn+l—+/n
ap, = (n*/m —1)".
Answer of exercise 1

The partial sums are just s, = > ., ax = vVn+1—1. But for any M € R, if we
take n > (M +1)? — 1, then v/n +1—1 > M. Thus s, is unbounded above, and thus
lim,, o0 S, does not exist. Thus Y a,, diverges.

. In a previous assignment you have shown that \/n(v/n —1—+/n) — 3. It follows that

there exists N such that for all n > N, v/n(v/n —1—/n) < 1. Thus for all n > N,

vn—1—4/n< \/iﬁ, 50 0 < a, < —575. But ) —5 converges. It follows that ) ay
also converges.

. Apply the root test: let a = lim,,_,, sup(n'/™ — 1). Rudin shows that n'/® — 1. Thus

a=1-1=0<1,s0 ) a, converges.

Exercise 2 (Rudin 3.8)

If > a, converges, and if {b,} is monotonic and bounded, prove that > a,b, converges.

Answer of exercise 2

This problem is deceptively tricky. It is tempting to try to do it by establishing some
inequality like [3°7_ anb,| < M[3_7_ an|, but I think this won’t work: no such inequality
can exist, since in some cases we might have [> 7 a,| =0but 3! a,b, # 0. (for example
imagine that a; = 1, ay = —1, while by = 1, by = 1/2, and consider p = 1, ¢ = 2.) In fact,
it is pretty delicate to get the estimate we want, but fortunately Rudin has done the hard
work for us, as follows.



{b,} is monotonic and bounded, so it has some limit M. Let ¢, = b, — M. Then {c,}
is also monotonic and ¢, — 0. Since a,b, = a,(c, + M), and > Ma, converges, we see
that > a,b, converges if and only if ) a,c, converges. If {¢,} is monotonically decreasing
then Theorem 3.42 of Rudin shows that ) a,c, indeed converges. If {¢,} is monotonically
increasing then we define ¢, = —¢,, and apply Theorem 3.42 to > a,c),.

Exercise 3 (Rudin 3.20)

Suppose {p,} is a Cauchy sequence in a metric space X, and some subsequence {py, }
converges to a point p € X. Prove that the full sequence {p,} converges to p.

Answer of exercise 3

Fix e > 0. We want to show that there exists N € N such that n > N = d(p,,p) < e.
Since {p,} is Cauchy, there exists N € N such that m,n > N = d(pm,p,) < €/2. Since
the subsequence {p,, } converges to p, there exists some k € N such that d(p,,,p) < /2 and
ng > N. Then for n > N we have

d(pn,p) < AP, Pny) + d(Pny, ) = €/2 4+ €/2 = .

Exercise 4 (Rudin 3.21)

Suppose {F,} is a sequence of closed nonempty and bounded sets in a complete metric
space X, with E,, D E,,11, and lim,,_,, diam F,, = 0. Prove that N, F,, consists of exactly
one point.

Answer of exercise 4

Pick a sequence {p,} in X, with p, € E, for all n. We will show that {p,} is a Cauchy
sequence. Indeed, fix some € > 0. Since diam F,, — 0, there exists some N € N for which
diam Ey < €. For any n,m > N we have p,,p, € Eyx and thus d(p,,pn) < €, so {p,} is
a Cauchy sequence as desired. Since X is complete, it follows that {p,} converges; let p be
the limit.

Now we want to show that p € Ey for all N. Since p, — p, for any € > 0 there is some
n for which p, € N.(p); also p, € En, so N.(p) contains a point of Ex. Hence p is a limit
point of En. But Ey is closed, so this means p € Ey. Since this holds for all N, we have
pEN b,

Finally, we need to show that p is the only point in N°, F,. So, suppose there is some
q € N, E,, with ¢ # p. Then there exists some n such that diam(E,) < d(p, q). Since both
p and ¢ are in E,, this is a contradiction.

* Exercise 5 (Rudin 3.22)

Suppose X is a nonempty complete metric space, and {G,,} is a sequence of open subsets
of X, such that each G, is dense in X. Prove that N2 ,G,, is not empty. (In fact, it is dense
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in X.) (Hint: find a shrinking sequence of neighborhoods E, such that E, C G,,, and apply
the previous exercise.)

Answer of exercise 5

It is useful to first think about an easier question: how do we know even that G; N G,
is not empty? Pick any ¢ € (G;. Since (5; is open, there is some neighborhood N of ¢ with
N C G;. Then since G5 is dense in X, either ¢ € G5 or ¢ is a limit point of G5; in either
case N contains a point p € GG5. Then p € G N Go,.

Now we consider the real question.

First, let p; be any point of G;. Since G is open, there exists some e for which N(p;) C
G,. Picking some € < ¢, let | = Nu(py); then E; C N.(p;) C Gi.

Next, take any ¢qo € F;. Since FEj is open, there is some neighborhood N of ¢» such that
N C E;. Then since G5 is dense in X, either ¢go € G5 or ¢ is a limit point of Gs; in either
case N contains a point py € GGo. Now, since N and (G are both open, there exists some ¢
such that N.(py) C N C E; and also N.(py) C Gs. Pick some €’ < ¢, and let Ey = Nu(ps);
then By C N.(p2) C E; and also Ey C Gs.

Continuing in this way we obtain subsets By, D Fy D E3 D --- with £, ¢ G,. By
shrinking F,, if necessary at each step, we can arrange that diam E,, < 1/n, so diam E,, — 0.
Thus, using the previous exercise, N>, £, contains a single point p. Then p is also in N>, G,,.



