M 382D: Differential Topology Spring 2015 Exercise Set 4 Due: Mon Feb 23

Exercise 1. Guillemin/Pollack: Chapter 1, §7 (p. 45): 4, 6 (assume *f* is smooth)

Exercise 2. Guillemin/Pollack: Chapter 1, §8 (p. 55): 3

Exercise 3. Prove that if $f : M \to N$ is a smooth map, then the differential $df : TM \to TN$ is also a smooth map.

Exercise 4. Recall that real projective space \mathbb{RP}^n may be defined as the set of nonzero real (n + 1)-tuples $x = (x^0, x^1, ..., x^n)$ up to an equivalence which identifies two (n + 1)-tuples if one is obtained from the other using scalar multiplication by a nonzero constant.

- 1. Let $F = F(x^0, ..., x^n)$ be a homogeneous real-valued function: $F(\lambda x) = \lambda^r F(x)$ for some real number r and all nonzero $\lambda \in \mathbb{R}$. How does the equation F = 0 define a subset of \mathbb{RP}^n ?
- 2. What condition on *F* guarantees that this subset is a submanifold?
- 3. Homogeneous polynomials are particular examples of homogeneous functions. Show that any linear polynomial *F* satisfies the condition you found in the previous part. What is the corresponding submanifold of \mathbb{RP}^n ?
- 4. Now investigate (homogeneous) quadratic and cubic polynomials. You might try the case n = 2 first to see what sort of submanifolds you get.

Exercise 5. For each of the following construct an example.

- 1. A compact manifold *M* and a smooth manifold *N* with dim $M = \dim N = 2$, and a smooth map $f : M \to N$ such that if $R \subset N$ is the subset of regular values and $\# : R \to \mathbb{Z}^{\geq 0}$ the function which assigns to $q \in R$ the cardinality of $f^{-1}(q)$, then # takes on three distinct values. (Recall from lecture that # is locally constant.)
- 2. An embedding $f : M \to N$ which is not proper.
- 3. A non-simply connected compact 4-manifold.
- 4. A surjective local diffeomorphism of 3-manifolds which is not a diffeomorphism.