Applications of QFT to Geometry: Exercise Set 1

Exercise 1

Consider the zero-dimensional QFT with field space $\mathcal{C} = \mathbb{R}$, action $S : \mathcal{C} \to \mathbb{R}$ given by

$$S(x) = \frac{m}{2}x^2 + \frac{\lambda}{4!}x^4 \tag{0.1}$$

with $\operatorname{Re}(\lambda) \ge 0, m > 0.$

- 1. Compute the perturbative expansion of Z up to order λ^3 , using Feynman diagrams. You should find $Z = \frac{\sqrt{2\pi}}{m} (1 - \frac{1}{8}\tilde{\lambda} + \frac{35}{384}\tilde{\lambda}^2 + \cdots)$ where $\tilde{\lambda} = \frac{\lambda}{m^2}$. (I drew the relevant diagrams in lecture, so this exercise just amounts to being sure you understand what I did.)
- 2. Compute the perturbative expansion of $\langle x^2 \rangle / Z$ up to order λ^3 , using Feynman diagrams. You should find $\langle x^2 \rangle / Z = \frac{1}{m} (1 \frac{1}{2}\tilde{\lambda} + \frac{2}{3}\tilde{\lambda}^2 \frac{11}{8}\tilde{\lambda}^3 + \cdots)$. (I drew the diagrams up to order $\tilde{\lambda}^2$ in lecture.)
- 3. Compute the perturbative expansion of $\langle x^4 \rangle / Z$ up to order λ^2 , using Feynman diagrams. You should find $\langle x^4 \rangle / Z = \frac{1}{m^2} (3 4\tilde{\lambda} + \frac{33}{4}\tilde{\lambda}^2 + \cdots)$.

Exercise 2

In the same zero-dimensional QFT considered in Exercise 1, consider holding m fixed and studying Z as a function of λ .

- 1. Show that $Z(\lambda)$ admits analytic continuation to a holomorphic function defined for $\lambda \in \mathbb{C} \setminus \mathbb{R}_-$. (Hint: consider the change of variables $x \to x/\lambda^{1/4}$).
- 2. Show that $Z(\lambda)$ does *not* admit analytic continuation to a meromorphic function on the plane, or even on any neighborhood of $\lambda = 0$. (Hint: consider what happens when λ crosses \mathbb{R}_{-} .)
- 3. Show that $Z(\lambda)$ does not admit any convergent power series expansion around $\lambda = 0$.
- 4. Show that nevertheless the perturbative expansion of $Z(\lambda)$ is an *asymptotic* expansion for $Z(\lambda)$.

Exercise 3

Consider the supersymmetric zero-dimensional QFT with field space $\mathcal{C} = \mathbb{R}^{1|2}$ coordinatized by (x, ψ^1, ψ^2) and action $S : \mathcal{C} \to \mathbb{R}$ given by

$$S = \frac{1}{2}h'(x)^2 + h''(x)\psi^1\psi^2$$
(0.2)

for some function $h : \mathbb{R} \to \mathbb{R}$.

1. In class I claimed that if $g = \rho''(x)\psi^2\psi^1 + h'(x)\rho'(x)$ for some function $\rho : \mathbb{R} \to \mathbb{R}$ then $\langle g \rangle = 0$. Verify this "directly," by first integrating over the fermions to reduce to an integral over x, and then using integration by parts.

2. I also claimed that $\langle g \rangle = -\frac{\partial}{\partial \lambda}|_{\lambda=0} \int_{\mathcal{C}} \mathrm{d}x \, \mathrm{d}\psi^1 \mathrm{d}\psi^2 \, e^{-(S+\lambda g)}$ as long as g/S is bounded, e.g. if g and S are polynomials with $\deg g \leq \deg S$. Prove this. (Hints to follow.)

Exercise 4

Fix a Riemannian manifold Y. Consider the one-dimensional QFT with field space $\mathcal{C} = \{\varphi : X \to Y\}$ and action $S = \int \frac{1}{2} \|\dot{\varphi}\|^2$, i.e. Lagrangian $L = \frac{1}{2} \|\dot{\varphi}\|^2 = \frac{1}{2} g_{ij}(\varphi(t)) \dot{\varphi}^i(t) \dot{\varphi}^j(t)$.

- 1. Verify that the space \mathcal{S} of classical solutions (critical locus of S) is the space of parameterized geodesics in Y. (I did this in class.) By considering "initial data" for the geodesics, identify \mathcal{S} with TY or equivalently with T^*Y .
- 2. In class I wrote a general formula for the symplectic structure on S in cases where L depends only on the first derivatives of the fields:

$$\omega = \mathrm{d}\left[\frac{\partial L}{\partial \dot{\varphi}^i(t)}\right] \wedge \mathrm{d}\varphi^i(t).$$

(Here we regard $\varphi^i(t)$ and $\frac{\partial L}{\partial \dot{\varphi}(t)}$ as functions on \mathcal{S} just by restriction from \mathcal{C} .) Use this formula to show that \mathcal{S} is symplectomorphic to T^*Y . (I stated this in class but didn't prove it.)