Applications of QFT to Geometry: Exercise Set 1

Exercise 1

Consider the zero-dimensional QFT with field space $\mathcal{C}=\mathbb{R}$, action $S: \mathcal{C} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
S(x)=\frac{m}{2} x^{2}+\frac{\lambda}{4!} x^{4} \tag{0.1}
\end{equation*}
$$

with $\operatorname{Re}(\lambda) \geq 0, m>0$.

1. Compute the perturbative expansion of Z up to order λ^{3}, using Feynman diagrams. You should find $Z=\frac{\sqrt{2 \pi}}{m}\left(1-\frac{1}{8} \tilde{\lambda}+\frac{35}{384} \tilde{\lambda}^{2}+\cdots\right)$ where $\tilde{\lambda}=\frac{\lambda}{m^{2}}$. (I drew the relevant diagrams in lecture, so this exercise just amounts to being sure you understand what I did.)
2. Compute the perturbative expansion of $\left\langle x^{2}\right\rangle / Z$ up to order λ^{3}, using Feynman diagrams. You should find $\left\langle x^{2}\right\rangle / Z=\frac{1}{m}\left(1-\frac{1}{2} \tilde{\lambda}+\frac{2}{3} \tilde{\lambda}^{2}-\frac{11}{8} \tilde{\lambda}^{3}+\cdots\right.$). (I drew the diagrams up to order $\tilde{\lambda}^{2}$ in lecture.)
3. Compute the perturbative expansion of $\left\langle x^{4}\right\rangle / Z$ up to order λ^{2}, using Feynman diagrams. You should find $\left\langle x^{4}\right\rangle / Z=\frac{1}{m^{2}}\left(3-4 \tilde{\lambda}+\frac{33}{4} \tilde{\lambda}^{2}+\cdots\right)$.

Exercise 2

In the same zero-dimensional QFT considered in Exercise 1, consider holding m fixed and studying Z as a function of λ.

1. Show that $Z(\lambda)$ admits analytic continuation to a holomorphic function defined for $\lambda \in \mathbb{C} \backslash \mathbb{R}_{-}$. (Hint: consider the change of variables $\left.x \rightarrow x / \lambda^{1 / 4}\right)$.
2. Show that $Z(\lambda)$ does not admit analytic continuation to a meromorphic function on the plane, or even on any neighborhood of $\lambda=0$. (Hint: consider what happens when λ crosses \mathbb{R}_{-}.)
3. Show that $Z(\lambda)$ does not admit any convergent power series expansion around $\lambda=0$.
4. Show that nevertheless the perturbative expansion of $Z(\lambda)$ is an asymptotic expansion for $Z(\lambda)$.

Exercise 3

Consider the supersymmetric zero-dimensional QFT with field space $\mathcal{C}=\mathbb{R}^{1 / 2}$ coordinatized by $\left(x, \psi^{1}, \psi^{2}\right)$ and action $S: \mathcal{C} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
S=\frac{1}{2} h^{\prime}(x)^{2}+h^{\prime \prime}(x) \psi^{1} \psi^{2} \tag{0.2}
\end{equation*}
$$

for some function $h: \mathbb{R} \rightarrow \mathbb{R}$.

1. In class I claimed that if $g=\rho^{\prime \prime}(x) \psi^{2} \psi^{1}+h^{\prime}(x) \rho^{\prime}(x)$ for some function $\rho: \mathbb{R} \rightarrow \mathbb{R}$ then $\langle g\rangle=0$. Verify this "directly," by first integrating over the fermions to reduce to an integral over x, and then using integration by parts.
2. I also claimed that $\langle g\rangle=-\left.\frac{\partial}{\partial \lambda}\right|_{\lambda=0} \int_{\mathcal{C}} \mathrm{d} x \mathrm{~d} \psi^{1} \mathrm{~d} \psi^{2} e^{-(S+\lambda g)}$ as long as g / S is bounded, e.g. if g and S are polynomials with $\operatorname{deg} g \leq \operatorname{deg} S$. Prove this. (Hints to follow.)

Exercise 4

Fix a Riemannian manifold Y. Consider the one-dimensional QFT with field space $\mathcal{C}=$ $\{\varphi: X \rightarrow Y\}$ and action $S=\int \frac{1}{2}\|\dot{\varphi}\|^{2}$, i.e. Lagrangian $L=\frac{1}{2}\|\dot{\varphi}\|^{2}=\frac{1}{2} g_{i j}(\varphi(t)) \dot{\varphi}^{i}(t) \dot{\varphi}^{j}(t)$.

1. Verify that the space \mathcal{S} of classical solutions (critical locus of S) is the space of parameterized geodesics in Y. (I did this in class.) By considering "initial data" for the geodesics, identify \mathcal{S} with $T Y$ or equivalently with $T^{*} Y$.
2. In class I wrote a general formula for the symplectic structure on \mathcal{S} in cases where L depends only on the first derivatives of the fields:

$$
\omega=\mathrm{d}\left[\frac{\partial L}{\partial \dot{\varphi}^{i}(t)}\right] \wedge \mathrm{d} \varphi^{i}(t) .
$$

(Here we regard $\varphi^{i}(t)$ and $\frac{\partial L}{\partial \dot{\varphi}(t)}$ as functions on \mathcal{S} just by restriction from \mathcal{C}.) Use this formula to show that \mathcal{S} is symplectomorphic to $T^{*} Y$. (I stated this in class but didn't prove it.)

