Complex Geometry: Exercise Set 3

Exercise 1

Complete the proof of the equivalence of five characterizations of integrability which we stated in class, by showing that if $\bar{\partial}^{2}=0$ then the distribution $T^{0,1} X \subset T_{\mathbb{C}} X$ is closed under Lie bracket.

Exercise 2

1. Suppose given an oriented real surface M with a Riemannian metric g. Define a canonical complex structure I_{g} on M. Your construction should be functorial in the sense that an orientation-preserving isometry $(M, g) \rightarrow\left(M^{\prime}, g^{\prime}\right)$ gives a holomorphic $\operatorname{map}\left(M, I_{g}\right) \rightarrow\left(M^{\prime}, I_{g}^{\prime}\right)$. Moreover, for any $f: M \rightarrow \mathbb{R}$ you should have $I_{g}=I_{e f g}$. (Hence I_{g} actually depends only on the conformal structure induced by the metric g.)
2. Show conversely that if $I_{g}=I_{g^{\prime}}$ then $g=e^{f} g^{\prime}$ for some f.
3. Show that every complex structure on M is obtained as I_{g} for some g. (Thus on a real surface, complex structures and conformal structures are equivalent.)

Exercise 3

In lecture we defined a holomorphic line bundle \mathcal{L}_{α} over the torus Σ_{τ}, for any $\alpha \in \mathbb{C}$.

1. Show that $\mathcal{L}_{\alpha} \otimes \mathcal{L}_{\beta} \simeq \mathcal{L}_{\alpha+\beta}$.
2. Show that $\mathcal{L}_{\alpha}^{*} \simeq \mathcal{L}_{-\alpha}$.

Exercise 4

Let $U \subset \mathbb{C}^{n}$ be some open set. Consider the topologically trivial C^{∞} complex vector bundle $V=U \times \mathbb{C}^{r}$ over U. We stated in class that a $\bar{\partial}$ operator on sections of V, obeying Leibniz rule, is equivalent to a holomorphic structure on V. Suppose given two such operators $\bar{\partial}^{(1)}, \bar{\partial}^{(2)}$. By the above we obtain two holomorphic vector bundles E_{1}, E_{2}. Show that $E_{1} \simeq E_{2}$ if and only if there exists a map $g: U \rightarrow G L(r, \mathbb{C})$ such that for all C^{∞} sections of V over U we have

$$
\bar{\partial}^{(1)} s-\bar{\partial}^{(2)} s=\left(g^{-1} \bar{\partial} g\right) s .
$$

Exercise 5

Consider a compact complex curve X. Define a meromorphic 1-form ω on X to be one which in local coordinates is $\omega=f(z) d z$ with $f(z)$ meromorphic.

1. For any $p \in X$ define the residue $\operatorname{Res}_{p} \omega$ of a meromorphic 1 -form ω. Show in particular that it does not depend on the choice of local coordinate around p. (In contrast, there is no good invariant notion of the residue of a meromorphic function!)
2. Prove that $\sum_{p \in X} \operatorname{Res}_{p} \omega=0$.

Exercise 6

Say X is a complex manifold with a submanifold Y. We call Y a complex submanifold if there is a holomorphic atlas of X which when restricted to Y gives a holomorphic atlas of Y. Show that if Y is a complex submanifold then $T Y \subset T X$ is closed under the almost complex structure operator I of X. (The converse is also true.)

Exercise 7

(These are easy - the point of putting them here is just that they are statements one should keep in RAM.)

1. Let $f: U \rightarrow V$ be a holomorphic map. Show that pullback f^{*} preserves bidegree of complexified differential forms, i.e. takes $\Omega^{p, q}(V) \rightarrow \Omega^{p, q}(U)$.
2. Show that if $\alpha \in \Omega^{* *}(U)$ is real ($\alpha=\bar{\alpha}$) and concentrated in a single bidegree, then $\alpha \in \Omega^{p, p}(U)$.
3. Show that $\overline{\partial \alpha}=\bar{\partial} \bar{\alpha}$.
