
Complex Geometry: Exercise Set 4

Exercise 1

Show that the sheafification F+ of a sheaf F is canonically isomorphic to F itself.

Exercise 2

Fix an abelian group G. Suppose that F is the constant presheaf F(U) = G. What is
the sheafification F+?

Exercise 3

Suppose F is a sheaf of OX-modules over a complex manifold X. Show that F is the
sheaf of sections of a holomorphic vector bundle of rank r if and only if F is locally free over
OX of rank r.

Exercise 4

Suppose F is a sheaf of abelian groups over M and φ : M → N is a continuous map.
Define the direct image φ∗F by φ∗F(U) = F(φ−1(U)).

1. Show that φ∗F is a sheaf.
(We used a special case of this implicitly in lecture when we discussed the Cech
resolution: there we had the inclusion maps iI : UI ↪→ M , and we defined Ck =
⊕|I|=k+1(iI)∗(F|UI

).)

2. Suppose M → N is a covering map of degree d, and F is the sheaf of sections of a
holomorphic vector bundle of rank n. Show that φ∗F is the sheaf of sections of a
holomorphic vector bundle of rank nd. (It is probably simplest to use the equivalent
characterization in terms of locally free O-modules.)

3. Say M = C, N = C, and φ(z) = z2. What is φ∗(O)? (There are two obvious
possibilities: either φ∗(O) is the sheaf of sections of a rank 2 holomorphic vector
bundle, or it is something more complicated because of the ramification at z = 0.)

Exercise 5

You may be surprised that sheaves naturally push forward since we have been emphasizing
the point of view that a sheaf is a kind of generalization of a vector bundle, and vector bundles
naturally pull back.

We can define the inverse image of a sheaf, with a bit more difficulty. Given φ : M → N
continuous, define φ−1F to be the sheafification of U 7→ limV⊃f(U)F(V ). (Note that if
i : S → M is the inclusion of a closed subset, then (i−1F)(S) is what we defined in lecture
to be F(S).)

1. Show by example that the sheafification is really necessary in this definition.

2. Show by example that if F is the sheaf of sections of a holomorphic vector bundle
F , φ−1F is generally not the sheaf of sections of φ∗F (unfortunately). Indeed, if
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φ : X → Y and F is a sheaf of OY -modules, then φ−1F is not even a sheaf of OX-
modules. (We could say something similar about C∞ bundles etc, replacing O by the
sheaf of C∞ functions, or even more generally by any sheaf of rings.)

3. To fix this problem, when F is an OY -module, we can define

φ∗F = φ−1F ⊗φ−1(OY ) OX .

(This definition should be interpreted with sheafification, as usual for operations on
sheaves.) This amounts to forcing φ∗F to be a sheaf of OX-modules “by hand.” Show
that if F is the sheaf of sections of F then φ∗F really is the sheaf of sections of φ∗F .
(It is probably a good idea to first consider the simple case of a covering map, say
2-1.)

Exercise 6

(For those who like counterexamples.) One might have tried to define the sheafification
F+ of a presheaf F by taking F+(U) to be the space of “discontinuous sections” s ∈

∏
x∈U Fx,

subject to the condition that there exist a covering of U by open sets Ui with fi ∈ F(Ui),
fi|Uij

= fj|Uij
, and (fi)x = sx. This doesn’t quite work if your presheaf is crazy enough:

since F is only a presheaf, F+ may involve coverings by sections that agree on stalks but
don’t agree on intersections! Read and understand the counterexample described at

http://mathoverflow.net/questions/31372/

Naturally, this kind of thing won’t bother us in the rest of the course.
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