Exercise 1

Solve Exercises 3-3, 3-4, 3-7, 3-8 of Lee.

Exercise 2

Let (V, \langle, \rangle) be a real vector space with positive definite inner product. As discussed in class, V is canonically a Riemannian manifold.

- 1. Let O(V) be the group of linear transformations of V preserving \langle, \rangle . Show that $O(V) \subset \text{Isom}(V)$.
- 2. For $v \in V$ define the translation $\varphi_v : V \to V$ by $\varphi_v(w) = w + v$. Show that $\varphi_v \in \text{Isom}(V)$, and the map $v \mapsto \varphi_v$ embeds V as an abelian subgroup of Isom(V).
- 3. Show that Isom(V) contains the semidirect product of V and O(V), with O(V) acting on V in the obvious way. (Later we will prove that Isom(V) equals this semidirect product.)

Exercise 3

- 1. Let $(M, g) \subset (\tilde{M}, \tilde{g})$ be an embedded Riemannian submanifold. Suppose $h \in \text{Isom}(\tilde{M}, \tilde{g})$ restricts to a map $M \to M$. Show that $h \in \text{Isom}(M, g)$.
- 2. Let (V, \langle, \rangle) be a real vector space with positive definite inner product. Let $S(V) = \{v \in V : ||v|| = 1\}$. Show that $O(V) \subset \text{Isom}(S(V))$.

Exercise 4

Let (M, g) be a Riemannian manifold. Let \langle , \rangle denote the inner product on any $T_l^k(M)$ induced by g.

1. Suppose $\eta, \omega \in T^1(M)$. Show that $\langle \eta^{\sharp}, \omega^{\sharp} \rangle = \langle \eta, \omega \rangle$.

Exercise 5

Let (M, g) be a Riemannian manifold and $f \in C^{\infty}(M)$.

1. Show that $\operatorname{grad} f$ points in the direction of fastest increase of the function f (part of the exercise is to figure out precisely what this sentence should mean).