Last time: \(\lim_{x \to a} f(x) = L \)
\(\lim_{x \to a} f(x) = \infty \)

Example: \(\lim_{x \to 0} \frac{1}{x^2} = \infty \)

Q 1) What is \(\lim_{x \to -3} \frac{x}{(x+3)^2} \)?
- \(-\infty \), DNE, 0

Plug in \(x = -3 \):
\(\frac{-3}{(-3+3)^2} = \frac{-3}{0} \to \text{no help} \)

If \(x \) is close to 3:
\(\frac{x}{(x+3)^2} = \frac{\text{close to 3}}{\text{very small positive}} \)
\(= \frac{\text{very large negative}}{} \)

So, \(\lim_{x \to -3} \frac{x}{(x+3)^2} = -\infty \)

Q 2) What is \(\lim_{x \to 2} \frac{x-2}{x^2-4} \)?

Plug in \(x = 2 \):
\(\frac{2-2}{4-4} = \frac{0}{0} \to \text{no help} \)

But, \(\lim_{x \to 2} \frac{x-2}{x^2-4} = \lim_{x \to 2} \frac{x-2}{(x-2)(x+2)} \)
\(= \lim_{x \to 2} \frac{1}{x+2} = \frac{1}{4} \)

Ex: \(\lim_{x \to 1} \frac{1}{x-1} \)

If \(x \) is slightly bigger than 1, \(x = 1.00001 \)
then \(\frac{1}{x-1} = \text{big positive} \)

If \(x \) is slightly smaller than 1, \(x = 0.99999 \)
then \(\frac{1}{x-1} = \text{big negative} \)

So,
\(\lim_{x \to 1^+} \frac{1}{x-1} = +\infty \)
\(\lim_{x \to 1^-} \frac{1}{x-1} = -\infty \)
\[
\lim_{x \to 1} \frac{1}{x-1} \text{ DNE!}
\]

\[
\text{Ex: } \lim_{x \to 0^+} \sin \left(\frac{1}{x}\right)
\]

DNE.

Limit Laws

Suppose \(c \) is any constant, and the limits \(\lim_{x \to a} f(x) \) and \(\lim_{x \to a} g(x) \) exist.

Then:

1. \(\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \)
2. \(\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) \)
3. \(\lim_{x \to a} c \cdot f(x) = c \cdot \lim_{x \to a} f(x) \)
4. \(\lim_{x \to a} f(x) \cdot g(x) = (\lim_{x \to a} f(x))(\lim_{x \to a} g(x)) \).

Ex: if \(\lim_{x \to 3} f(x) = 7 \), \(\lim_{x \to 3} g(x) = 8 \) then \(\lim_{x \to 3} f(x)g(x) = 56 \).

5. \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \) (if \(\lim_{x \to a} g(x) \neq 0 \))

6. \(\lim_{x \to a} f(x)^n = (\lim_{x \to a} f(x))^n \)

Ex:

\[
\lim_{x \to 0} \frac{x^2}{3 \sin^2 x} = \frac{1}{3} \lim_{x \to 0} \frac{x^2}{\sin^2 x}
\]

\[
= \frac{1}{3} \left(\lim_{x \to 0} \frac{x}{\sin x} \right)^2
\]

\[
= \frac{1}{3} \left(\lim_{x \to 0} \frac{1}{x} \right)^2
\]

\[
= \frac{1}{3} \left(\frac{1}{1} \right)^2 = \frac{1}{3}
\]

OC. \[
\frac{1}{3} \left(\lim_{x \to 0} \frac{\sin x}{x} \right)^{-2}
\]

\[
= \frac{1}{3} \cdot 1^{-2}
\]

\[
= \frac{1}{3}
\]
\(\lim_{x \to a} c = c \)

\(\lim_{x \to a} x = a \)

\(\lim_{x \to a} x^a = a^a \)

\(\lim_{x \to a} \sqrt{x} = \sqrt{a} \)

\(\lim_{x \to a} \sqrt{f(x)} = \sqrt{\lim_{x \to a} f(x)} \)

\(\lim_{x \to 0} x^2 + 9 = ? \)

\[= 9 \]

\(\lim_{x \to 0} \sqrt{x^2 + 9} = ? \)

\[= \sqrt{\lim_{x \to 0} x^2 + 9} \]

(by Limit Law 11)

\[= \sqrt{\lim_{x \to 0} x^2 + \lim_{x \to 0} 9} \]

\[= \sqrt{0^2 + 9} \]

\[= \sqrt{9} = 3 \]

\(\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^2} = ? \)

\quad \text{ phymin 0: } \frac{3 - 3}{0^2} = \frac{0}{0} \quad \text{ no help}

Simplify:

\[\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^2} \cdot \frac{\sqrt{x^2 + 9} + 3}{\sqrt{x^2 + 9} + 3} = \lim_{x \to 0} \frac{x^2 + 9 - 9}{x^2(\sqrt{x^2 + 9} + 3)} \]

\[= \lim_{x \to 0} \frac{x^2}{x^2(\sqrt{x^2 + 9} + 3)} \]

\[= \lim_{x \to 0} \frac{1}{\sqrt{x^2 + 9} + 3} = \frac{1}{6} \]