If \(f(x) \) has a local min at \(x = a \) and \(f(x) \) is differentiable at \(x = a \) and \(x = a \) is not an endpoint of the domain of \(f \), then \(f'(a) = 0 \) (hence tangent).

Strategy for finding absolute max/min for a function \(f \) with domain \([a,b]\):

1. Find values of \(f \) at all "critical numbers":
 - \(x \) where \(f'(x) = 0 \) or \(f'(x) \) DNE.
2. Find values of \(f(a), f(b) \)
3. Take max, min values of \(f \) from that list.

Ex: Find absolute max, min of \(f(x) = 12 + 4x - x^2 \) on \([0,5]\) \((0 \leq x \leq 5) \)

1. \(f'(x) \) exists everywhere — no point where \(f'(x) \) DNE.
 - \(f'(x) = 4 - 2x \)
 - so \(f'(x) = 0 \) only at \(4 - 2x = 0 \) \(\Rightarrow x = 2 \).
 - So only critical # is \(x = 2 \).
 - \(f(2) = 12 + 4 \cdot 2 - 2^2 = 16 \).
2. \(f(0) = 12 + 4 \cdot 0 - 0^2 = 12. \)
 - \(f(5) = 12 + 4 \cdot 5 - 5^2 = 7 \)
3. Max is \(f(2) = 16 \). Min is \(f(5) = 7 \).
Exercise
Find absolute max of
\[f(x) = x^{-2} \ln x \quad \text{for} \quad 1 \leq x \leq 100. \]

1. \[f'(x) = -2x^{-3} \ln x + x^{-2} \cdot \frac{1}{x} \]
 \[= -2x^{-3} \ln x + x^{-3} \]
 \[= x^{-3}(-2 \ln x + 1) \]
 \[f'(x) = 0: \]
 \[0 = x^{-3}(-2 \ln x + 1) \quad \text{only if} \quad 0 = -2 \ln x + 1 \]
 \[2 \ln x = 1 \]
 \[\ln x = \frac{1}{2} \]
 \[x = e^{\frac{1}{2}} = \sqrt{e} \]
 \[f(\sqrt{e}) = (\sqrt{e})^{-2} \ln (\sqrt{e}) = \frac{1}{e} \cdot \frac{1}{2} = \frac{1}{2e} \]

2. \[f(1) = 1 - \ln(1) = 0 \]
 \[f(100) = \frac{1}{10000} \ln 100 \]

3. The max is one of \[\frac{1}{2e}, 0, \frac{\ln(100)}{10000} \].
 \[\frac{1}{2e} > \frac{\ln(100)}{10000} \]
 So, \[f'(x) = \frac{1}{2e} \]
 is abs max.
Graph using derivatives

How do we use \(f'(x) \) to get information about the graph of \(f(x) \)?

Ex. Find where the function \(f(x) = 3x^4 - 4x^3 - 12x^2 + 5 \) is increasing and where it is decreasing.

\[
f'(x) = 12x^3 - 12x^2 - 24x
\]

\[
= 12x(x^2 - x - 2)
\]

\[
= 12x(x-2)(x+1)
\]

To see if \(f'(x) \) is positive or negative, look at

<table>
<thead>
<tr>
<th>Sign of (f'(x))</th>
<th>+++++</th>
<th>+ + + +</th>
<th>+ + +</th>
<th>+ +</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

So \(f(x) \) is increasing for \(x \in (-1, 0) \cup (2, \infty) \)

decreasing for \(x \in (-\infty, -1) \cup (0, 2) \)

\[
f(-1) = 0
\]
\[
f(0) = 5
\]
\[
f(2) = -27
\]

Let's look closer at the critical pts. \(f'(x) = 0 \) at \(x = -1, 0, 2 \).
At $x = 2:$ $\frac{\text{sign } f'(x)}{2} \quad \begin{array}{c} \downarrow \\text{local min} \end{array}$

At $x = 0:$ $\begin{array}{c} \begin{array}{c} \downarrow \\text{local max} \end{array} \end{array}$

At $x = -1:$ $\begin{array}{c} \begin{array}{c} \downarrow \\text{local min} \end{array} \end{array}$

First Derivative Test

If c is a critical number for $f(x),$

1. If $f'(x)$ changes sign from $+$ to $-$ at $c,$ then f has local max at $c.$

2. If $f'(x)$ changes sign from $-$ to $+$ at $c,$ then f has local min at $c.$

3. If $f'(x)$ doesn't change sign at $c,$ then f has neither local max or local min at $c.$

Ex Find all local max/min of $f(x) = \frac{1}{3}x(x+4)$ on $(0, \infty)$ and $(-\infty, 0)$

For $x \neq 0,$ $f'(x)$ exists everywhere.

$$f'(x) = \frac{1}{3}x^{\frac{2}{3}}(x+4) + x^{\frac{1}{3}}$$

$$= \frac{1}{3}x^{\frac{2}{3}} + \frac{4}{3}x^{\frac{2}{3}} + x^{\frac{1}{3}}$$

$$= \frac{4}{3}x^{\frac{2}{3}}(x+1)$$

$f'(x) = 0$ only at $x = -1.$

$s(x^{-\frac{1}{2}})^2 > 0$

on $(0, \infty):$ no local max/min
on \((-\infty, 0)\): \quad \text{sign of } f'(x) \quad +-- +
\begin{array}{c}
\times \\
-1 \\
0
\end{array}

S. \ x=-1 \ is \ \underline{\text{local minimum}}.